Matching Items (1)
Filtering by

Clear all filters

156029-Thumbnail Image.png
Description
With the application of reverse osmosis (RO) membranes in the wastewater treatment and seawater desalination, the limitation of flux and fouling problems of RO have gained more attention from researchers. Because of the tunable structure and physicochemical properties of nanomaterials, it is a suitable material that can be used to

With the application of reverse osmosis (RO) membranes in the wastewater treatment and seawater desalination, the limitation of flux and fouling problems of RO have gained more attention from researchers. Because of the tunable structure and physicochemical properties of nanomaterials, it is a suitable material that can be used to incorporate with RO to change the membrane performances. Silver is biocidal, which has been used in a variety of consumer products. Recent studies showed that fabricating silver nanoparticles (AgNPs) on membrane surfaces can mitigate the biofouling problem on the membrane. Studies have shown that Ag released from the membrane in the form of either Ag ions or AgNP will accelerate the antimicrobial activity of the membrane. However, the silver release from the membrane will lower the silver loading on the membrane, which will eventually shorten the antimicrobial activity lifetime of the membrane. Therefore, the silver leaching amount is a crucial parameter that needs to be determined for every type of Ag composite membrane.

This study is attempting to compare four different silver leaching test methods, to study the silver leaching potential of the silver impregnated membranes, conducting the advantages and disadvantages of the leaching methods. An In-situ reduction Ag loaded RO membrane was examined in this study. A custom waterjet test was established to create a high-velocity water flow to test the silver leaching from the nanocomposite membrane in a relative extreme environment. The batch leaching test was examined as the most common leaching test method for the silver composite membrane. The cross-flow filtration and dead-end test were also examined to compare the silver leaching amounts.

The silver coated membrane used in this experiment has an initial silver loading of 2.0± 0.51 ug/cm2. The mass balance was conducted for all of the leaching tests. For the batch test, water jet test, and dead-end filtration, the mass balances are all within 100±25%, which is acceptable in this experiment because of the variance of the initial silver loading on the membranes. A bad silver mass balance was observed at cross-flow filtration. Both of AgNP and Ag ions leached in the solution was examined in this experiment. The concentration of total silver leaching into solutions from the four leaching tests are all below the Secondary Drinking Water Standard for silver which is 100 ppb. The cross-flow test is the most aggressive leaching method, which has more than 80% of silver leached from the membrane after 50 hours of the test. The water jet (54 ± 6.9% of silver remaining) can cause higher silver leaching than batch test (85 ± 1.2% of silver remaining) in one-hour, and it can also cause both AgNP and Ag ions leaching from the membrane, which is closer to the leaching condition in the cross-flow test.
ContributorsHan, Bingru (Author) / Westerhoff, Paul (Thesis advisor) / Perreault, Francois (Committee member) / Sinha, Shahnawaz (Committee member) / Arizona State University (Publisher)
Created2017