Matching Items (1)
Filtering by

Clear all filters

158729-Thumbnail Image.png
Description
Wearable technology has brought in a rapid shift in the areas of healthcare and lifestyle management. The recent development and usage of wearable devices like smart watches has created significant impact in areas like fitness management, exercise tracking, sleep quality assessment and early diagnosis of diseases like asthma, sleep apnea

Wearable technology has brought in a rapid shift in the areas of healthcare and lifestyle management. The recent development and usage of wearable devices like smart watches has created significant impact in areas like fitness management, exercise tracking, sleep quality assessment and early diagnosis of diseases like asthma, sleep apnea etc. This thesis is dedicated to the development of wearable systems and algorithms to fulfill unmet needs in the area of cardiorespiratory monitoring.

First, a pneumotach based flow sensing technique has been developed and integrated into a face mask for respiratory profile tracking. Algorithms have been developed to convert the pressure profile into respiratory flow rate profile. Gyroscope-based correction is used to remove motion artifacts that arise from daily activities. By using Principal Component Analysis, the follow-up work established a unique respiratory signature for each subject based on the flow profile and lung parameters computed using the wearable mask system.

Next, wristwatch devices to track transcutaneous gases like oxygen (TcO2) and carbon dioxide (TcCO2), and oximetry (SpO2) have been developed. Two chemical sensing approaches have been explored. In the first approach, miniaturized low-cost commercial sensors have been integrated into the wristwatch for transcutaneous gas sensing. In the second approach, CMOS camera-based colorimetric sensors are integrated into the wristwatch, where a part of camera frame is used for photoplethysmography while the remaining part tracks the optical signal from colorimetric sensors.

Finally, the wireless connectivity using Bluetooth Low Energy (BLE) in wearable systems has been explored and a data transmission protocol between wearables and host for reliable transfer has been developed. To improve the transmission reliability, the host is designed to use queue-based re-request routine to notify the wearable device of the missing packets that should be re-transmitted. This approach avoids the issue of host dependent packet losses and ensures that all the necessary information is received.

The works in this thesis have provided technical solutions to address challenges in wearable technologies, ranging from chemical sensing, flow sensing, data analysis, to wireless data transmission. These works have demonstrated transformation of traditional bench-top medical equipment into non-invasive, unobtrusive, ergonomic & stand-alone healthcare devices.
ContributorsTipparaju, Vishal Varun (Author) / Xian, Xiaojun (Thesis advisor) / Forzani, Erica (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Angadi, Siddhartha (Committee member) / Arizona State University (Publisher)
Created2020