Matching Items (17)
Filtering by

Clear all filters

Description
This dissertation uses a comparative approach to investigate long-term human- environment interrelationships in times of climate change. It uses Geographical Information Systems and ecological models to reconstruct the Magdalenian (~20,000- 14,000 calibrated years ago) environments of the coastal mountainous zone of Cantabria (Northwest Spain) and the interior valleys of the

This dissertation uses a comparative approach to investigate long-term human- environment interrelationships in times of climate change. It uses Geographical Information Systems and ecological models to reconstruct the Magdalenian (~20,000- 14,000 calibrated years ago) environments of the coastal mountainous zone of Cantabria (Northwest Spain) and the interior valleys of the Dordogne (Southwest France) to contextualize the social networks that could have formed during a time of high climate and resource variability. It simulates the formation of such networks in an agent-based model, which documents the processes underlying the formation of archaeological assemblages, and evaluates the potential impacts of climate-topography interactions on cultural transmission. This research then reconstructs the Magdalenian social networks visible through a multivariate statistical analysis of stylistic similarities among portable art objects. As these networks cannot be analyzed directly to infer social behavior, their characteristics are compared to the results of the agent-based model, which provide characteristics estimates of the Magdalenian latent social networks that most likely produced the empirical archaeological assemblage studied.

This research contributes several new results, most of which point to the advantages of using an inter-disciplinary approach to the study of the archaeological record. It demonstrates the benefits of using an agent-based model to parse social data from long- term palimpsests. It shows that geographical and environmental contexts affect the structure of social networks, which in turn affects the transmission of ideas and goods that flow through it. This shows the presence of human-environment interactions that not only affected our ancestors’ reaction to resource insecurities, but also led them to innovate and improve the productivity of their own environment. However, it also suggests that such alterations may have reduced the populations’ resilience to strong climatic changes, and that the region with diverse resources provided a more stable and resilient environment than the region transformed to satisfy the immediate needs of its population.
ContributorsGravel-Miguel, Claudine (Author) / Barton, C. Michael (Thesis advisor) / Coudart, Anick (Committee member) / Clark, Geoffrey A. (Committee member) / Arizona State University (Publisher)
Created2017
Description

PowerPoint presentation to the Santa Fe Institute, October 2004.

ContributorsBarton, C. Michael (Author)
Created2004
Description

Dramatic changes in land use were associated with the rise of agriculture in the mid Holocene in the Mediterranean region. Both surface properties and drainage networks were changed along with direct modifications to surface properties (vegetation removal and change, sediment liberation and compaction); consequent drainage alteration (terracing, canals) and u

Dramatic changes in land use were associated with the rise of agriculture in the mid Holocene in the Mediterranean region. Both surface properties and drainage networks were changed along with direct modifications to surface properties (vegetation removal and change, sediment liberation and compaction); consequent drainage alteration (terracing, canals) and up and downstream responses in the watersheds communicated these changes throughout the landscape.

The magnitude, rate, and feedbacks with the growing human populations are critical questions in our effort to assess human-landscape interactions. To investigate these relationships, recent field work in the Penaguila Valley of southeast Spain included landform mapping, alluvial deposit description, and sample collection emphasizing areas of active erosion, remnant land surfaces and their relation to archaeological sites.

We have updated our geomorphic maps by refining the delineation of alluvial terraces, steep-walled (40m deep) drainages ("barrancos"), and hollows ("barrancos de fondo plano"). Hollows are curved, elongate, flat-bottomed gullies with steep walls (2-30m tall) and extend headward from the main barrancos. This work enables more accurate terrace correlations necessary for both landscape evolution modeling and interpretation of the development history of the basin.

Alluvial terraces are crucial to this research because they record periods of past stable topography. In the Penaguila, sites dating back to late Mesolithic and early Neolithic (around 6600 BP) and subsequent periods (Chalcolithic and Bronze Age) are exposed on a prominent terrace surface mapped as Terrace A. This broad low relief surface is scarred by deep barrancos and hollow formation that expose bedrock marls and overlying alluvial deposits. Stratigraphic profiles and texture analyses of Terrace A deposits reveal overland flow facies and channel networks in reworked and CaCO3-encrusted marls, and several organic-rich paleosols. Small remnant surfaces mapped as Terrace Z (below Terrace A) were observed within the main barrancos and indicate a later, brief accumulation period with subsequent incision to the modern channel.

Holocene landscape development in the Penaguila appears to have progressed from a period of stability to slope denudation with aggradation (stream infilling) followed by rapid incision which initiated sometime near the time of occupation. This change from a low relief alluvial surface to one cut by narrow channels may have been an important shift for local populations. Their response to that environmental modification may be associated with the horticulturalist to agricultural intensification noted in the archaeological record. Tighter chronology and better understanding of the driving processes for barranco incision and hollow formation will improve our ability to correlate the changing landscape with land use practices. Such an improved correlation leads to better understanding of human-landscape interactions.

ContributorsDiMaggio, E. N. (Author) / La Roca, N. (Author) / Arrowsmith, J. Ramon (Author) / Diez-Castillo, A. (Author) / Bernabeu, J. (Author) / Barton, C. Michael (Author)