Matching Items (4)
Filtering by

Clear all filters

155924-Thumbnail Image.png
Description
Testing and calibration constitute a significant part of the overall manufacturing cost of microelectromechanical system (MEMS) devices. Developing a low-cost testing and calibration scheme applicable at the user side that ensures the continuous reliability and accuracy is a crucial need. The main purpose of testing is to eliminate defective devices

Testing and calibration constitute a significant part of the overall manufacturing cost of microelectromechanical system (MEMS) devices. Developing a low-cost testing and calibration scheme applicable at the user side that ensures the continuous reliability and accuracy is a crucial need. The main purpose of testing is to eliminate defective devices and to verify the qualifications of a product is met. The calibration process for capacitive MEMS devices, for the most part, entails the determination of the mechanical sensitivity. In this work, a physical-stimulus-free built-in-self-test (BIST) integrated circuit (IC) design characterizing the sensitivity of capacitive MEMS accelerometers is presented. The BIST circuity can extract the amplitude and phase response of the acceleration sensor's mechanics under electrical excitation within 0.55% of error with respect to its mechanical sensitivity under the physical stimulus. Sensitivity characterization is performed using a low computation complexity multivariate linear regression model. The BIST circuitry maximizes the use of existing analog and mixed-signal readout signal chain and the host processor core, without the need for computationally expensive Fast Fourier Transform (FFT)-based approaches. The BIST IC is designed and fabricated using the 0.18-µm CMOS technology. The sensor analog front-end and BIST circuitry are integrated with a three-axis, low-g capacitive MEMS accelerometer in a single hermetically sealed package. The BIST circuitry occupies 0.3 mm2 with a total readout IC area of 1.0 mm2 and consumes 8.9 mW during self-test operation.
ContributorsOzel, Muhlis Kenan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ozev, Sule (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2017
Description

Recovery from exercise has become an evolving aspect of all sports performance. Increased research has led numerous individuals to understand and utilize the modalities that have become available. Methods such as Cold Water Immersion (CWI), Contrast Water Therapy (CWT), and Hot Water Immersion (HWI) are some of the modalities growing

Recovery from exercise has become an evolving aspect of all sports performance. Increased research has led numerous individuals to understand and utilize the modalities that have become available. Methods such as Cold Water Immersion (CWI), Contrast Water Therapy (CWT), and Hot Water Immersion (HWI) are some of the modalities growing in popularity as well as utilization by athletes across all sports. This paper aims to examine and analyze evidence across several research journals that evaluate the effectiveness and also application of these recovery methods. Cold and heat exposures on the body can have a drastic positive impact on athletic performance. However, without the correct knowledge and guidance, these methods can augment, mitigate, and even diminish the effects of adaptation and exercise. This thesis aims to examine research journals and extract specific practices based on empirical evidence. This is to form proper deliverables and protocols for athletes to use for ideal adaptations and recovery for performance.

ContributorsHouse, Grant (Author) / Levinson, Simin (Thesis director) / Behm, Herbert (Committee member) / Vezina, Jesse (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / Sandra Day O'Connor College of Law (Contributor)
Created2022-05
165388-Thumbnail Image.png
ContributorsHouse, Grant (Author) / Levinson, Simin (Thesis director) / Behm, Herbert (Committee member) / Vezina, Jesse (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05