Matching Items (20)

Composing Hybrid Discrete Event System and Cellular Automata Models

Description

Hybrid system models - those devised from two or more disparate sub-system models - provide a number of benefits in terms of conceptualization, development, and assessment of dynamical systems. The

Hybrid system models - those devised from two or more disparate sub-system models - provide a number of benefits in terms of conceptualization, development, and assessment of dynamical systems. The decomposition approach helps to formulate complex interactions that are otherwise difficult or impractical to express. However, hybrid model development and usage can introduce complexity that emerges from the composition itself.

To improve assurance of model correctness, sub-systems using disparate modeling formalisms must be integrated above and beyond just the data and control level; their composition must have model specification and simulation execution aspects as well. Poly-formalism composition is one approach to composing models in this manner.

This dissertation describes a poly-formalism composition between a Discrete EVent System specification (DEVS) model and a Cellular Automata (CA) model types. These model specifications have been chosen for their broad applicability in important and emerging domains. An agent-environment domain exemplifies the composition approach. The inherent spatial relations within a CA make it well-suited for environmental representations. Similarly, the component-based nature of agents fits well within the hierarchical component structure of DEVS.

This composition employs the use of a third model, called an interaction model, that includes methods for integrating the two model types at a formalism level, at a systems architecture level, and at a model execution level. A prototype framework using DEVS for the agent model and GRASS for the environment has been developed and is described. Furthermore, this dissertation explains how the concepts of this composition approach are being applied to a real-world research project.

This dissertation expands the tool set modelers in computer science and other disciplines have in order to build hybrid system models, and provides an interaction model for an on-going research project. The concepts and models presented in this dissertation demonstrate the feasibility of composition between discrete-event agents and discrete-time cellular automata. Furthermore, it provides concepts and models that may be applied directly, or used by a modeler to devise compositions for other research efforts.

Contributors

Agent

Created

Date Created
  • 2009

147899-Thumbnail Image.png

YOU GOT GIS: GEOSPATIAL DATA, SIMPLIFIED FOR 501(c)3 NONPROFITS

Description

The contemporary world is motivated by data-driven decision-making. Small 501(c)3 nonprofit organizations are often limited in their reach due to their size, lack of funding, and a lack of data

The contemporary world is motivated by data-driven decision-making. Small 501(c)3 nonprofit organizations are often limited in their reach due to their size, lack of funding, and a lack of data analysis expertise. In an effort to increase accessibility to data analysis for such organizations, a Founders Lab team designed a product to help them understand and utilize geographic information systems (GIS) software. This product – You Got GIS – strikes the balance between highly technical documentation and general overviews, benefiting 501(c)3 nonprofits in their pursuit of data-driven decision-making. Through the product’s use of case studies and methodologies, You Got GIS serves as a thought experiment platform to start answering questions regarding GIS. The product aims to continuously build partnerships in an effort to improve curriculum and user engagement.

Contributors

Agent

Created

Date Created
  • 2021-05

151996-Thumbnail Image.png

West Nile virus in Maricopa County, Arizona: investigating human, vector, and environmental interactions

Description

Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will

Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will continue to do so in the foreseeable future. Currently, West Nile virus is the only mosquitoes-transmitted disease actively, and natively, transmitted throughout the state of Arizona. In an effort to gain a more complete understanding of the transmission dynamics of West Nile virus this thesis examines human, vector, and environment interactions as they exist within Maricopa County. Through ethnographic and geographic information systems research methods this thesis identifies 1) the individual factors that influence residents' knowledge and behaviors regarding mosquitoes, 2) the individual and regional factors that influence residents' knowledge of mosquito ecology and the spatial distribution of local mosquito populations, and 3) the environmental, demographic, and socioeconomic factors that influence mosquito abundance within Maricopa County. By identifying the factors that influence human-vector and vector-environment interactions, the results of this thesis may influence current and future educational and mosquito control efforts throughout Maricopa County.

Contributors

Agent

Created

Date Created
  • 2013

151286-Thumbnail Image.png

Spatial optimization approaches for solving the continuous Weber and multi-Weber problems

Description

Facility location models are usually employed to assist decision processes in urban and regional planning. The focus of this research is extensions of a classic location problem, the Weber problem,

Facility location models are usually employed to assist decision processes in urban and regional planning. The focus of this research is extensions of a classic location problem, the Weber problem, to address continuously distributed demand as well as multiple facilities. Addressing continuous demand and multi-facilities represents major challenges. Given advances in geographic information systems (GIS), computational science and associated technologies, spatial optimization provides a possibility for improved problem solution. Essential here is how to represent facilities and demand in geographic space. In one respect, spatial abstraction as discrete points is generally assumed as it simplifies model formulation and reduces computational complexity. However, errors in derived solutions are likely not negligible, especially when demand varies continuously across a region. In another respect, although mathematical functions describing continuous distributions can be employed, such theoretical surfaces are generally approximated in practice using finite spatial samples due to a lack of complete information. To this end, the dissertation first investigates the implications of continuous surface approximation and explicitly shows errors in solutions obtained from fitted demand surfaces through empirical applications. The dissertation then presents a method to improve spatial representation of continuous demand. This is based on infill asymptotic theory, which indicates that errors in fitted surfaces tend to zero as the number of sample points increases to infinity. The implication for facility location modeling is that a solution to the discrete problem with greater demand point density will approach the theoretical optimum for the continuous counterpart. Therefore, in this research discrete points are used to represent continuous demand to explore this theoretical convergence, which is less restrictive and less problem altering compared to existing alternatives. The proposed continuous representation method is further extended to develop heuristics to solve the continuous Weber and multi-Weber problems, where one or more facilities can be sited anywhere in continuous space to best serve continuously distributed demand. Two spatial optimization approaches are proposed for the two extensions of the Weber problem, respectively. The special characteristics of those approaches are that they integrate optimization techniques and GIS functionality. Empirical results highlight the advantages of the developed approaches and the importance of solution integration within GIS.

Contributors

Agent

Created

Date Created
  • 2012

151349-Thumbnail Image.png

Spatiotemporal data mining, analysis, and visualization of human activity data

Description

This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze

This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data mining, machine learning, and geovisualization techniques. Three different types of spatiotemporal activity data were collected through different data collection approaches: (1) crowd sourced geo-tagged digital photos, representing people's travel activity, were retrieved from the website Panoramio.com through information retrieval techniques; (2) the same techniques were used to crawl crowd sourced GPS trajectory data and related metadata of their daily activities from the website OpenStreetMap.org; and finally (3) preschool children's daily activities and interactions tagged with time and geographical location were collected with a novel TabletPC-based behavioral coding system. The proposed methodology is applied to these data to (1) automatically recommend optimal multi-day and multi-stay travel itineraries for travelers based on discovered attractions from geo-tagged photos, (2) automatically detect movement types of unknown moving objects from GPS trajectories, and (3) explore dynamic social and socio-spatial patterns of preschool children's behavior from both geographic and social perspectives.

Contributors

Agent

Created

Date Created
  • 2012

151618-Thumbnail Image.png

Implementing rapid assessment of the trail environments of arid regions: indicator development and implementation scenarios

Description

As part of the effort to streamline management efforts in protected areas worldwide and assist accountability reporting, new techniques to help guide conservation goals and monitor progress are needed. Rapid

As part of the effort to streamline management efforts in protected areas worldwide and assist accountability reporting, new techniques to help guide conservation goals and monitor progress are needed. Rapid assessment is recognized as a field-level data collection technique, but each rapid assessment index is limited to only the ecoregion for which it is designed. This dissertation contributes to the existing bodies of conservation monitoring and tourism management literature in four ways: (i.) Indicators are developed for rapid assessment in arid and semi-arid regions, and the processes by which new indicators should be developed is explained; (ii.) Interpolation of surveyed data is explored as a step in the analysis process of a dataset collected through rapid assessment; (iii.) Viewshed is used to explore differences in impacts at two study sites and its underutilization in this context of conservation management is explored; and (iv.) A crowdsourcing tool to distribute the effort of monitoring trail areas is developed and deployed, and the results are used to explore this data collection's usefulness as a management tool.

Contributors

Agent

Created

Date Created
  • 2013

151549-Thumbnail Image.png

Implicit visualization as usable science visualizing uncertainty as decision outcomes

Description

Decision makers contend with uncertainty when working through complex decision problems. Yet uncertainty visualization, and tools for working with uncertainty in GIS, are not widely used or requested in decision

Decision makers contend with uncertainty when working through complex decision problems. Yet uncertainty visualization, and tools for working with uncertainty in GIS, are not widely used or requested in decision support. This dissertation suggests a disjoint exists between practice and research that stems from differences in how visualization researchers conceptualize uncertainty and how decision makers frame uncertainty. To bridge this gap between practice and research, this dissertation explores uncertainty visualization as a means for reframing uncertainty in geographic information systems for use in policy decision support through three connected topics. Initially, this research explores visualizing the relationship between uncertainty and policy outcomes as a means for incorporating policymakers' decision frames when visualizing uncertainty. Outcome spaces are presented as a method to represent the effect of uncertainty on policy outcomes. This method of uncertainty visualization acts as an uncertainty map, representing all possible outcomes for specific policy decisions. This conceptual model incorporates two variables, but implicit uncertainty can be extended to multivariate representations. Subsequently, this work presented a new conceptualization of uncertainty, termed explicit and implicit, that integrates decision makers' framing of uncertainty into uncertainty visualization. Explicit uncertainty is seen as being separate from the policy outcomes, being described or displayed separately from the underlying data. In contrast, implicit uncertainty links uncertainty to decision outcomes, and while understood, it is not displayed separately from the data. The distinction between explicit and implicit is illustrated through several examples of uncertainty visualization founded in decision science theory. Lastly, the final topic assesses outcome spaces for communicating uncertainty though a human subject study. This study evaluates the effectiveness of the implicit uncertainty visualization method for communicating uncertainty for policy decision support. The results suggest that implicit uncertainty visualization successfully communicates uncertainty in results, even though uncertainty is not explicitly shown. Participants also found the implicit visualization effective for evaluating policy outcomes. Interestingly, participants also found the explicit uncertainty visualization to be effective for evaluating the policy outcomes, results that conflict with prior research.

Contributors

Agent

Created

Date Created
  • 2013

151538-Thumbnail Image.png

Addressing geographic uncertainty in spatial optimization

Description

There exist many facets of error and uncertainty in digital spatial information. As error or uncertainty will not likely ever be completely eliminated, a better understanding of its impacts is

There exist many facets of error and uncertainty in digital spatial information. As error or uncertainty will not likely ever be completely eliminated, a better understanding of its impacts is necessary. Spatial analytical approaches, in particular, must somehow address data quality issues. This can range from evaluating impacts of potential data uncertainty in planning processes that make use of methods to devising methods that explicitly account for error/uncertainty. To date, little has been done to structure methods accounting for error. This research focuses on developing methods to address geographic data uncertainty in spatial optimization. An integrated approach that characterizes uncertainty impacts by constructing and solving a new multi-objective model that explicitly incorporates facets of data uncertainty is developed. Empirical findings illustrate that the proposed approaches can be applied to evaluate the impacts of data uncertainty with statistical confidence, which moves beyond popular practices of simulating errors in data. Spatial uncertainty impacts are evaluated in two contexts: harvest scheduling and sex offender residency. Owing to the integration of spatial uncertainty, the detailed multi-objective models are more complex and computationally challenging to solve. As a result, a new multi-objective evolutionary algorithm is developed to address the computational challenges posed. The proposed algorithm incorporates problem-specific spatial knowledge to significantly enhance the capability of the evolutionary algorithm for solving the model.  

Contributors

Agent

Created

Date Created
  • 2013