Matching Items (2)

155842-Thumbnail Image.png

The Possible Photochemical Origins of Banded Iron Formations

Description

Banded iron formations (BIFs) are among the earliest possible indicators for oxidation of the Archean biosphere. However, the origin of BIFs remains debated. Proposed formation mechanisms include oxidation of Fe(II) by O2 (Cloud, 1973), photoferrotrophy (Konhauser et al., 2002), and

Banded iron formations (BIFs) are among the earliest possible indicators for oxidation of the Archean biosphere. However, the origin of BIFs remains debated. Proposed formation mechanisms include oxidation of Fe(II) by O2 (Cloud, 1973), photoferrotrophy (Konhauser et al., 2002), and abiotic UV photooxidation (Braterman et al., 1983; Konhauser et al., 2007). Resolving this debate could help determine whether BIFs are really indicators of O2, biological activity, or neither.

To examine the viability of abiotic UV photooxidation of Fe, laboratory experiments were conducted in which Fe-bearing solutions were irradiated with different regions of the ultraviolet (UV) spectrum and Fe oxidation and precipitation were measured. The goal was to revisit previous experiments that obtained conflicting results, and extend these experiments by using a realistic bicarbonate buffered solution and a xenon (Xe) lamp to better match the solar spectrum and light intensity.

In experiments reexamining previous work, Fe photooxidation and precipitation was observed. Using a series of wavelength cut-off filters, the reaction was determined not to be caused by light > 345 nm. Experiments using a bicarbonate buffered solution, simulating natural waters, and using unbuffered solutions, as in prior work showed the same wavelength sensitivity. In an experiment with a Xe lamp and realistic concentrations of Archean [Fe(II)], Fe precipitation was observed in hours, demonstrating the ability for photooxidation to occur significantly in a simulated natural setting.

These results lead to modeled Fe photooxidation rates of 25 mg Fe cm-2 yr-1—near the low end of published BIF deposition rates, which range from 9 mg Fe cm-2 yr-1 to as high as 254 mg Fe cm-2 yr-1 (Konhauser et al., 2002; Trendall and Blockley, 1970). Because the rates are on the edge and the model has unquantified, favorable assumptions, these results suggest that photooxidation could contribute to, but might not be completely responsible for, large rapidly deposited BIFs such those in the Hamersley Basin. Further work is needed to improve the model and test photooxidation with other solution components. Though possibly unable to fully explain BIFs, UV light has significant oxidizing power, so the importance of photooxidation in the Archean as an environmental process and its impact on paleoredox proxies need to be determined.

Contributors

Agent

Created

Date Created
2017

158429-Thumbnail Image.png

Investigations into Crustal Composition and Oxidative Weathering in the Archean

Description

Archean oxidative weathering reactions were likely important O2 sinks that delayed the oxygenation of Earth’s atmosphere, as well as sources of bio-essential trace metals such as Mo to the biosphere. However, the rates of these reactions are difficult to quantify

Archean oxidative weathering reactions were likely important O2 sinks that delayed the oxygenation of Earth’s atmosphere, as well as sources of bio-essential trace metals such as Mo to the biosphere. However, the rates of these reactions are difficult to quantify experimentally at relevantly low concentrations of O2. With newly developed O2 sensors, weathering experiments were conducted to measure the rate of sulfide oxidation at Archean levels of O2, a level three orders of magnitude lower than previous experiments. The rate laws produced, combined with weathering models, indicate that crustal sulfide oxidation by O2 was possible even in a low O2 Archean atmosphere.

Given the experimental results, it is expected that crustal delivery of bio-essential trace metals (such as Mo) from sulfide weathering was active even prior to the oxygenation of Earth’s atmosphere. Mo is a key metal for biological N2 fixation and its ancient use is evidenced by N isotopes in ancient sedimentary rocks. However, it is typically thought that Mo was too low to be effectively bioavailable early in Earth’s history, given the low abundances of Mo found in ancient sediments. To reconcile these observations, a computational model was built that leverages isotopic constraints to calculate the range of seawater concentrations possible in ancient oceans. Under several scenarios, bioavailable concentrations of seawater Mo were attainable and compatible with the geologic record. These results imply that Mo may not have been limiting for early metabolisms.

Titanium (Ti) isotopes were recently proposed to trace the evolution of the ancient continental crust, and have the potential to trace the distribution of other trace metals during magmatic differentiation. However, significant work remains to understand fully Ti isotope fractionation during crust formation. To calibrate this proxy, I carried out the first direct measurement of mineral-melt fractionation factors for Ti isotopes in Kilauea Iki lava lake and built a multi-variate fractionation law for Ti isotopes during magmatic differentiation. This study allows more accurate forward-modeling of isotope fractionation during crust differentiation, which can now be paired with weathering models and ocean mass balance to further reconstruct the composition of Earth’s early continental crust, atmosphere, and oceans.

Contributors

Agent

Created

Date Created
2020