Matching Items (3)

156015-Thumbnail Image.png

Robust distributed parameter estimation in wireless sensor networks

Description

Fully distributed wireless sensor networks (WSNs) without fusion center have advantages such as scalability in network size and energy efficiency in communications. Each sensor shares its data only with neighbors

Fully distributed wireless sensor networks (WSNs) without fusion center have advantages such as scalability in network size and energy efficiency in communications. Each sensor shares its data only with neighbors and then achieves global consensus quantities by in-network processing. This dissertation considers robust distributed parameter estimation methods, seeking global consensus on parameters of adaptive learning algorithms and statistical quantities.

Diffusion adaptation strategy with nonlinear transmission is proposed. The nonlinearity was motivated by the necessity for bounded transmit power, as sensors need to iteratively communicate each other energy-efficiently. Despite the nonlinearity, it is shown that the algorithm performs close to the linear case with the added advantage of power savings. This dissertation also discusses convergence properties of the algorithm in the mean and the mean-square sense.

Often, average is used to measure central tendency of sensed data over a network. When there are outliers in the data, however, average can be highly biased. Alternative choices of robust metrics against outliers are median, mode, and trimmed mean. Quantiles generalize the median, and they also can be used for trimmed mean. Consensus-based distributed quantile estimation algorithm is proposed and applied for finding trimmed-mean, median, maximum or minimum values, and identification of outliers through simulation. It is shown that the estimated quantities are asymptotically unbiased and converges toward the sample quantile in the mean-square sense. Step-size sequences with proper decay rates are also discussed for convergence analysis.

Another measure of central tendency is a mode which represents the most probable value and also be robust to outliers and other contaminations in data. The proposed distributed mode estimation algorithm achieves a global mode by recursively shifting conditional mean of the measurement data until it converges to stationary points of estimated density function. It is also possible to estimate the mode by utilizing grid vector as well as kernel density estimator. The densities are estimated at each grid point, while the points are updated until they converge to a global mode.

Contributors

Agent

Created

Date Created
  • 2017

157589-Thumbnail Image.png

Learning with attributed networks: algorithms and applications

Description

Attributes - that delineating the properties of data, and connections - that describing the dependencies of data, are two essential components to characterize most real-world phenomena. The synergy between these

Attributes - that delineating the properties of data, and connections - that describing the dependencies of data, are two essential components to characterize most real-world phenomena. The synergy between these two principal elements renders a unique data representation - the attributed networks. In many cases, people are inundated with vast amounts of data that can be structured into attributed networks, and their use has been attractive to researchers and practitioners in different disciplines. For example, in social media, users interact with each other and also post personalized content; in scientific collaboration, researchers cooperate and are distinct from peers by their unique research interests; in complex diseases studies, rich gene expression complements to the gene-regulatory networks. Clearly, attributed networks are ubiquitous and form a critical component of modern information infrastructure. To gain deep insights from such networks, it requires a fundamental understanding of their unique characteristics and be aware of the related computational challenges.

My dissertation research aims to develop a suite of novel learning algorithms to understand, characterize, and gain actionable insights from attributed networks, to benefit high-impact real-world applications. In the first part of this dissertation, I mainly focus on developing learning algorithms for attributed networks in a static environment at two different levels: (i) attribute level - by designing feature selection algorithms to find high-quality features that are tightly correlated with the network topology; and (ii) node level - by presenting network embedding algorithms to learn discriminative node embeddings by preserving node proximity w.r.t. network topology structure and node attribute similarity. As changes are essential components of attributed networks and the results of learning algorithms will become stale over time, in the second part of this dissertation, I propose a family of online algorithms for attributed networks in a dynamic environment to continuously update the learning results on the fly. In fact, developing application-aware learning algorithms is more desired with a clear understanding of the application domains and their unique intents. As such, in the third part of this dissertation, I am also committed to advancing real-world applications on attributed networks by incorporating the objectives of external tasks into the learning process.

Contributors

Agent

Created

Date Created
  • 2019

155837-Thumbnail Image.png

Analysis of hardware usage of shuffle instruction based performance optimization in the Blinds-II image quality assessment algorithm

Description

With the advent of GPGPU, many applications are being accelerated by using CUDA programing paradigm. We are able to achieve around 10x -100x speedups by simply porting the application on

With the advent of GPGPU, many applications are being accelerated by using CUDA programing paradigm. We are able to achieve around 10x -100x speedups by simply porting the application on to the GPU and running the parallel chunk of code on its multi cored SIMT (Single instruction multiple thread) architecture. But for optimal performance it is necessary to make sure that all the GPU resources are efficiently used, and the latencies in the application are minimized. For this, it is essential to monitor the Hardware usage of the algorithm and thus diagnose the compute and memory bottlenecks in the implementation. In the following thesis, we will be analyzing the mapping of CUDA implementation of BLIINDS-II algorithm on the underlying GPU hardware, and come up with a Kepler architecture specific solution of using shuffle instruction via CUB library to tackle the two major bottlenecks in the algorithm. Experiments were conducted to convey the advantage of using shuffle instru3ction in algorithm over only using shared memory as a buffer to global memory. With the new implementation of BLIINDS-II algorithm using CUB library, a speedup of around 13.7% was achieved.

Contributors

Agent

Created

Date Created
  • 2017