Matching Items (3)

155811-Thumbnail Image.png

Trade-offs in utilizing of zero-valent iron for synergistic biotic and abiotic reduction of trichloroethene and perchlorate in soil and groundwater

Description

The advantages and challenges of combining zero-valent iron (ZVI) and microbial reduction of trichloroethene (TCE) and perchlorate (ClO4-) in contaminated soil and groundwater are not well understood. The objective of this work was to identify the benefits and limitations of

The advantages and challenges of combining zero-valent iron (ZVI) and microbial reduction of trichloroethene (TCE) and perchlorate (ClO4-) in contaminated soil and groundwater are not well understood. The objective of this work was to identify the benefits and limitations of simultaneous application of ZVI and bioaugmentation for detoxification of TCE and ClO4- using conditions relevant to a specific contaminated site. We studied conditions representing a ZVI-injection zone and a downstream zone influenced Fe (II) produced, for simultaneous ZVI and microbial reductive dechlorination applications using bench scale semi-batch microcosm experiments. 16.5 g L-1 ZVI effectively reduced TCE to ethene and ethane but ClO4- was barely reduced. Microbial reductive dechlorination was limited by both ZVI as well as Fe (II) derived from oxidation of ZVI. In the case of TCE, rapid abiotic TCE reduction made the TCE unavailable for the dechlorinating bacteria. In the case of perchlorate, ZVI inhibited the indigenous perchlorate-reducing bacteria present in the soil and groundwater. Further, H2 generated by ZVI reactions stimulated competing microbial processes like sulfate reduction and methanogenesis. In the microcosms representing the ZVI downstream zone (Fe (II) only), we detected accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) after 56 days. Some ethene also formed under these conditions. In the absence of ZVI or Fe (II), we detected complete TCE dechlorination to ethene and faster rates of ClO4- reduction. The results illustrate potential limitations of combining ZVI with microbial reduction of chlorinated compounds and show the potential that each technology has when applied separately.

Contributors

Agent

Created

Date Created
2017

157534-Thumbnail Image.png

Concurrent reduction of trichloroethylene and perchlorate in continuous flow-through soil columns

Description

The objective of this study was to evaluate possible bioremediation strategy for aerobic aquifers by combining ZVI chemical reduction and microbial reductive dechlorination for TCE and ClO4-. To achieve this objective, continuous flow-through soil columns were used to test the

The objective of this study was to evaluate possible bioremediation strategy for aerobic aquifers by combining ZVI chemical reduction and microbial reductive dechlorination for TCE and ClO4-. To achieve this objective, continuous flow-through soil columns were used to test the hypothesis that bioaugmentation with dechlorinating enrichment cultures downstream of the ZVI injection can lead to complete reduction of TCE and ClO4- in aerobic aquifers. We obtained soil and groundwater from a Superfund site in Arizona. The experiments consisted of 205 cm3 columns packed with soil and ZVI, which fed 1025 cm3 columns packed with soil, biostimulated with fermentable substrates and bioaugmented. Aerobic groundwater was pumped through the ZVI columns. The ZVI reduced the oxidation-reduction potential (ORP) of groundwater from +150 mV to -190 mV. The reduced groundwater and biostimulation with fermentable substrates created anaerobic conditions in the bioaugmentation columns favorable for anaerobic microbial activity. Perchlorate (ClO4-) reduction to non-detectable levels occurred after biostimulation. Reduction of TCE to cis-dichloroethene, vinyl chloride and ethene was observed only after bioaugmentation. Within ~120 days of continuous columns operation, ethene was produced in the bioaugmentation columns this dechlorination activity was sustained until the end of experiments. The groundwater from the Superfund site had high concentration of sulfate (~1000 mg/L). Substantial sulfate reduction occurred in the bioaugmentation columns. Complete microbial reduction of TCE and perchlorate is usually challenging in the presence of high sulfate concentration; however, the strategy tested in this study suggests that a bioremediation scheme for simultaneous reduction of TCE and perchlorate in aerobic aquifers containing high sulfate concentration is feasible.

Contributors

Agent

Created

Date Created
2019

157409-Thumbnail Image.png

Reductive dechlorination sustained by microbial chain elongation

Description

Trichloroethene (TCE) is a ubiquitous soil and groundwater contaminant. The most common bioremediation approach for TCE relies on the process of reductive dechlorination by Dehalococcoides mccartyi. D. mccartyi use TCE, dichloroethene, and vinyl chloride as electron acceptors and hydrogen as

Trichloroethene (TCE) is a ubiquitous soil and groundwater contaminant. The most common bioremediation approach for TCE relies on the process of reductive dechlorination by Dehalococcoides mccartyi. D. mccartyi use TCE, dichloroethene, and vinyl chloride as electron acceptors and hydrogen as an electron donor. At contaminated sites, reductive dechlorination is typically promoted by adding a fermentable substrate, which is broken down to short chain fatty acids, simple alcohols, and hydrogen. This study explored microbial chain elongation (MCE), instead of fermentation, to promote TCE reductive dechlorination. In MCE, microbes use simple substrates (e.g., acetate, ethanol) to build medium chain fatty acids and also produce hydrogen during this process. Soil microcosm using TCE and acetate and ethanol as MCE substrates were established under anaerobic conditions. In soil microcosms with synthetic groundwater and natural groundwater, ethene was the main product from TCE reductive dechlorination and butyrate and hydrogen were the main products from MCE. Transfer microcosms using TCE and either acetate and ethanol, ethanol, or acetate were also established. The transfers with TCE and ethanol showed the faster rates of reductive dechlorination and produced more elongated products (i.e., hexanoate). The microbial groups enriched in the soil microcosms likely responsible for chain elongation were most similar to Clostridium genus. These investigations showed the potential for synergistic microbial chain elongation and reductive dechlorination of chlorinated ethenes.

Contributors

Agent

Created

Date Created
2019