Matching Items (2)
Filtering by

Clear all filters

155767-Thumbnail Image.png
Description
This thesis explores the human factors effects pilots have when controlling the aircraft during the takeoff phase of flight. These variables come into play in the transitory phase from ground roll to flight, and in the initiation of procedures to abort a takeoff during the ground run. The

This thesis explores the human factors effects pilots have when controlling the aircraft during the takeoff phase of flight. These variables come into play in the transitory phase from ground roll to flight, and in the initiation of procedures to abort a takeoff during the ground run. The FAA provides regulations for manufacturers and operators to follow, ensuring safe manufacture of aircraft and pilots that fly without endangering the passengers; however, details regarding accounting of piloting variability are lacking. Creation of a numerical simulation allowed for the controlled variation of isolated piloting procedures in order to evaluate effects on field performance. Reduced rotation rates and delayed reaction times were found to cause significant increases in field length requirements over values published in the AFM. A pilot survey was conducted to evaluate common practices for line pilots in the field, which revealed minimum regulatory compliance is exercised with little to no feedback on runway length requirements. Finally, observation of pilots training in a CRJ-200 FTD gathered extensive information on typical piloting timings in the cockpit. AEO and OEI takeoffs were observed, as well as RTOs. Pilots showed large variability in procedures and timings resulting in significant inconsistency in runway distances used as well as V-speed compliance. The observed effects from pilot timing latency correlated with the numerical simulation increased field length outputs. Variability in piloting procedures results in erratic field performance that deviates from AFM published values that invite disaster in an aircraft operating near its field performance limitations.
ContributorsWood, Donald L (Author) / Takahashi, Timothy T (Thesis advisor) / Niemczyk, Mary (Thesis advisor) / Files, Greg (Committee member) / Arizona State University (Publisher)
Created2017
155933-Thumbnail Image.png
Description
The Doghouse Plot visually represents an aircraft’s performance during combined turn-climb maneuvers. The Doghouse Plot completely describes the turn-climb capability of an aircraft; a single plot demonstrates the relationship between climb performance, turn rate, turn radius, stall margin, and bank angle. Using NASA legacy codes, Empirical Drag Estimation Technique (EDET)

The Doghouse Plot visually represents an aircraft’s performance during combined turn-climb maneuvers. The Doghouse Plot completely describes the turn-climb capability of an aircraft; a single plot demonstrates the relationship between climb performance, turn rate, turn radius, stall margin, and bank angle. Using NASA legacy codes, Empirical Drag Estimation Technique (EDET) and Numerical Propulsion System Simulation (NPSS), it is possible to reverse engineer sufficient basis data for commercial and military aircraft to construct Doghouse Plots. Engineers and operators can then use these to assess their aircraft’s full performance envelope. The insight gained from these plots can broaden the understanding of an aircraft’s performance and, in turn, broaden the operational scope of some aircraft that would otherwise be limited by the simplifications found in their Airplane Flight Manuals (AFM). More importantly, these plots can build on the current standards of obstacle avoidance and expose risks in operation.
ContributorsWilson, John Robert (Author) / Takahashi, Timothy T (Thesis advisor) / Middleton, James (Committee member) / White, Daniel (Committee member) / Arizona State University (Publisher)
Created2017