Matching Items (1)
Filtering by

Clear all filters

155733-Thumbnail Image.png
Description
Acute Myeloid Leukemia (AML) is a disease that occurs when genomic changes alter expression of key genes in myeloid blood cells. These changes cause them to resume an undifferentiated state, proliferate, and maintain growth throughout the body. AML is commonly treated with chemotherapy, but recent efforts to reduce therapy toxicity

Acute Myeloid Leukemia (AML) is a disease that occurs when genomic changes alter expression of key genes in myeloid blood cells. These changes cause them to resume an undifferentiated state, proliferate, and maintain growth throughout the body. AML is commonly treated with chemotherapy, but recent efforts to reduce therapy toxicity have focused on drugs that specifically target and inhibit protein products of the cancer’s aberrantly expressed genes. This method has proved difficult for some proteins because of structural challenges or mutations that confer resistance to therapy. One potential method of targeted therapy that circumvents these issues is the use of small molecules that stabilize DNA secondary structures called G-quadruplexes. G-quadruplexes are present in the promoter region of many potential oncogenes and have regulatory roles in their transcription. This study analyzes the therapeutic potential of the compound GQC-05 in AML. This compound was shown in vitro to bind and stabilize the regulatory G-quadruplex in the MYC oncogene, which is commonly misregulated in AML. Through qPCR and western blot analysis, a GQC-05 mediated downregulation of MYC mRNA and protein was observed in AML cell lines with high MYC expression. In addition, GQC-05 is able to reduce cell viability through induction of apoptosis in sensitive AML cell lines. Concurrent treatment of AML cell lines with GQC-05 and the MYC inhibitor (+)JQ1 showed an antagonistic effect, indicating potential competition in the silencing of MYC. However, GQC-05 is not able to reduce MYC expression significantly enough to induce apoptosis in less sensitive AML cell lines. This resistance may be due to the cells’ lack of dependence on other potential GQC-05 targets that may help upregulate MYC or stabilize its protein product. Three such genes identified by RNA-seq analysis of GQC-05 treated cells are NOTCH1, PIM1, and RHOU. These results indicate that the use of small molecules to target the MYC promoter G-quadruplex is a viable potential therapy for AML. They also support a novel mechanism for targeting other potentially key genetic drivers in AML and lay the groundwork for advances in treatment of other cancers driven by G-quadruplex regulated oncogenes.
ContributorsTurnidge, Megan (Author) / Lake, Douglas (Thesis advisor) / Kim, Suwon (Committee member) / Azorsa, David (Committee member) / Arizona State University (Publisher)
Created2017