Matching Items (5)

Filtering by

Clear all filters

A study of heating and degradation of acrylonitrile-butadiene-styrene/polycarbonate polymer due to ultraviolet lasers illumination during localized pre-deposition heating for fused filament fabrication 3D printing

Description

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that mimic the strength characteristics of a comparable part of the same design and materials created using injection molding. In achieving this goal the production cost can be reduced by eliminating the initial investment needed for the creation of expensive tooling. This initial investment reduction will allow for a wider variant of products in smaller batch runs to be made available. This thesis implements the use of ultraviolet (UV) illumination for an in-process laser local pre-deposition heating (LLPH). By comparing samples with and without the LLPH process it is determined that applied energy that is absorbed by the polymer is converted to an increase in the interlayer temperature, and resulting in an observed increase in tensile strength over the baseline test samples. The increase in interlayer bonding thus can be considered the dominating factor over polymer degradation.

Contributors

Agent

Created

Date Created
2017

156317-Thumbnail Image.png

Utilization of thermoplastic mounting studs for simple performance testing on hot mix asphalt

Description

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to

The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to obtain properties that will help in future pavement designs. Currently, these fixtures (mounting studs) are made of expensive brass and cumbersome to clean with or without chemicals.

Three types of thermoplastics were utilized to assess the effect of temperature and applied stress on the performance of the 3D printed studs. Asphalt concrete samples fitted with thermoplastic studs were tested according to AASHTO & ASTM standards. The thermoplastics tested are: Polylactic acid (PLA), the most common 3D printing material; Acrylonitrile Butadiene Styrene (ABS), a typical 3D printing material which is less rigid than PLA and has a higher melting temperature; Polycarbonate (PC), a strong, high temperature 3D printing material.

A high traffic volume Marshal mix design from the City of Phoenix was obtained and adapted to a Superpave mix design methodology. The mix design is dense-graded with nominal maximum aggregate size of ¾” inch and a PG 70-10 binder. Samples were fabricated and the following tests were performed: Dynamic Modulus |E*| conducted at five temperatures and six frequencies; Flow Number conducted at a high temperature of 50°C, and axial cyclic fatigue test at a moderate temperature of 18°C.

The results from SPT for each 3D printed material were compared to results using brass mounting studs. Validation or rejection of the concept was determined from statistical analysis on the mean and variance of collected SPT test data.

The concept of using 3D printed thermoplastic for mounting stud fabrication is a promising option; however, the concept should be verified with more extensive research using a variety of asphalt mixes and operators to ensure no bias in the repeatability and reproducibility of test results. The Polycarbonate (PC) had a stronger layer bonding than ABS and PLA while printing. It was recommended for follow up studies.

Contributors

Agent

Created

Date Created
2018

157332-Thumbnail Image.png

Combined UV-temperature-humidity accelerated testing of PV modules: reliability of UV-cut and UV-pass EVA encapsulants

Description

In the past, the photovoltaic (PV) modules were typically constructed with glass superstrate containing cerium oxide and EVA (ethylene vinyl acetate) encapsulant containing UV absorbing additives. However, in the current industry, the PV modules are generally constructed without cerium oxide

In the past, the photovoltaic (PV) modules were typically constructed with glass superstrate containing cerium oxide and EVA (ethylene vinyl acetate) encapsulant containing UV absorbing additives. However, in the current industry, the PV modules are generally constructed without cerium oxide in the glass and UV absorbing additives in EVA to increase quantum efficiency of crystalline silicon solar cells in the UV regions. This new approach is expected to boost the initial power output of the modules and reduce the long-term encapsulant browning issues. However, this new approach could lead to other durability and reliability issues such as delamination of encapsulant by damaging interfacial bonds, destruction of antireflection coating on solar cells and even breakage of polymeric backbone of EVA. This work compares the durability and reliability issues of PV modules having glass without cerium oxide and EVA with (aka, UVcut or UVC) and without (aka, UVpass or UVP) UV absorbing additives. In addition, modules with UVP front and UVC back EVA have also been investigated (aka, UVhybrid or UVH). The mini-modules with nine split cells used in this work were fabricated at ASU’s Photovoltaic Reliability Laboratory. The durability and reliability caused by three stress variables have been investigated and the three variables are temperature, humidity/oxygen and UV dosage. The influence of up to 800 kWh/m2 UV dosage has been investigated at various dosage levels. Many material and device characterizations have been performed to ascertain the degradation modes and effects. The UVC modules showed encapsulant discoloration at the cell centers as expected but the UVH modules showed a ring-shaped encapsulant discoloration close to the cell edges as evidenced in the UV fluorescence (UVF) imaging study. The PV modules containing UVP on both sides of cells with limited access to humidity or oxygen through backsheet (covered backsheet with adhesive aluminum tape) seem to experience encapsulant delamination as evidenced in the UVF images. Plausible explanations for these observations have been presented.

Contributors

Agent

Created

Date Created
2019

156065-Thumbnail Image.png

Inactivation of bacteria and viruses in water using ultraviolet light and advanced oxidation processes in a bench-scale and two pilot-scale systems

Description

Adenoviruses cause gastrointestinal illnesses and have been listed on the U.S. EPA’s Contaminant Candidate Lists (CCL). They are highly resistant to ultraviolet (UV) inactivation. Advanced oxidation processes (AOPs) are known to improve inactivation of microorganisms and simultaneously oxidize organics. The

Adenoviruses cause gastrointestinal illnesses and have been listed on the U.S. EPA’s Contaminant Candidate Lists (CCL). They are highly resistant to ultraviolet (UV) inactivation. Advanced oxidation processes (AOPs) are known to improve inactivation of microorganisms and simultaneously oxidize organics. The bacteriophage P22 was selected as a surrogate for adenoviruses due to their physical and genetic similarities.

The main objective of this study was to compare the synergic disinfection potential of titanium dioxide (TiO2) or peracetic acid (PAA) with UV for viruses and bacteria in water.

Both bench-scale and pilot-scale evaluation was done. A bench-scale collimated beam was included to evaluate the inactivation of P22 and E. coli by UV with and without TiO2 or PAA. A Purifics Photo-Cat system which is an integrated UV/ceramic membrane reactor was used for the pilot-scale TiO2-UV AOP experiments. For pilot-scale PAA-UV AOP experiments, an in-line D222 UV reactor unit provided by NeoTech Aqua Solutions, Inc. was used.

TiO2 doses of 1, 10, and 40 mg/L were applied in the collimated beam and the Photo-Cat system. Higher TiO2 doses resulted in a higher inactivation in the Photo-Cat and lower inactivation in the collimated beam apparatus. Adding 40 mg/L of TiO2 in the photo-Cat system improved P22 inactivation by 25% while it slightly decreased P22 inactivation in collimated beam apparatus.

PAA doses of 0.25 or 0.5 ppm were continuously injected upstream of the UV light and a 53% or 90% increase in inactivation was observed for E. coli, respectively, as compared to UV alone. However, P22 required higher dose with PAA-UV AOP and PAA concentrations of 1 or 10 ppm resulted in an 18% and 70% increase in the inactivation respectively, as compared to UV alone. Interestingly, when the same condition was applied to water with more organics (UVT 79%), E. coli exhibited the same level of susceptibility to PAA-UV AOP while P22 inactivation decreased.

The results provide new insight on the effectiveness and applicability of adding AOP to UV for microbial inactivation in water. PAA-UV AOP can potentially enhance existing UV disinfection systems with minimal chemical addition, and a simple retrofit to existing UV units.

Contributors

Agent

Created

Date Created
2017

168395-Thumbnail Image.png

Advancing Methods to Monitor and Assess Personal Ultraviolet Radiation Exposure

Description

Ultraviolet (UV) radiation is the most well-known cause of skin cancer, and skin cancer is the most common type of cancer in the United States. People are exposed to UV rays when they engage in outdoor activities, particularly exercise, which

Ultraviolet (UV) radiation is the most well-known cause of skin cancer, and skin cancer is the most common type of cancer in the United States. People are exposed to UV rays when they engage in outdoor activities, particularly exercise, which is an important health behavior. Thus, researchers and the general public have shown increasing interest in measuring UV exposures during outdoor physical activity using wearable sensors. However, minimal research exists at the intersection of UV sensors, personal exposure, adaptive behavior due to exposures, and risk of skin damage. Three studies are presented in this dissertation: (1) a state-of-the-art review that synthesizes the current academic and grey literature surrounding personal UV sensing technologies; (2) the first study to investigate the effects of specific physical activity types, skin type, and solar angle on personal exposure in different outdoor environmental contexts; and (3) a study that develops recommendations for future UV-sensing wearables based on follow-up interviews with participants from the second study, who used a wrist-worn UV sensor while exercising outdoors. The first study provides recommendations for 13 commercially available sensors that are most suitable for various types of research or personal use. The review findings will help guide researchers in future studies assessing UV exposure with wearables during physical activity. The second study outlines the development of predictive models for individual-level UV exposure, which are also provided. These models recommend the inclusion of sky view factor, solar angle, activity type, urban environment type, and the directions traveled during physical activity. Finally, based on user feedback, the third study recommends that future UV-sensing wearables should be multi-functional watches where users can toggle between showing their UV exposure results in cumulative and countdown formats, which is intuitive and aesthetically pleasing to users.

Contributors

Agent

Created

Date Created
2021