Matching Items (3)
155430-Thumbnail Image.png
Description
A new class of layered materials called the transition metal trichalcogenides (TMTCs) exhibit strong anisotropic properties due to their quasi-1D nature. These 2D materials are composed of chain-like structures which are weakly bound to form planar sheets with highly directional properties. The vibrational properties of three materials from the TMTC

A new class of layered materials called the transition metal trichalcogenides (TMTCs) exhibit strong anisotropic properties due to their quasi-1D nature. These 2D materials are composed of chain-like structures which are weakly bound to form planar sheets with highly directional properties. The vibrational properties of three materials from the TMTC family, specifically TiS3, ZrS3, and HfS3, are relatively unknown and studies performed in this work elucidates the origin of their Raman characteristics. The crystals were synthesized through chemical vapor transport prior to mechanical exfoliation onto Si/SiO¬2 substrates. XRD, AFM, and Raman spectroscopy were used to determine the crystallinity, thickness, and chemical signature of the exfoliated crystals. Vibrational modes and anisotropic polarization are investigated through density functional theory calculations and angle-resolved Raman spectroscopy. Particular Raman modes are explored in order to correlate select peaks to the b-axis crystalline direction. Mode III vibrations for TiS3, ZrS3, and HfS3 are shared between each material and serves as a unique identifier of the crystalline orientation in MX3 materials. Similar angle-resolved Raman studies were conducted on the novel Nb0.5Ti0.5S3 alloy material grown through chemical vapor transport. Results show that the anisotropy direction is more difficult to determine due to the randomization of quasi-1D chains caused by defects that are common in 2D alloys. This work provides a fundamental understanding of the vibrational properties of various TMTC materials which is needed to realize applications in direction dependent polarization and linear dichroism.
ContributorsKong, Wilson (Author) / Tongay, Sefaattin (Thesis advisor) / Wang, Liping (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2017
158656-Thumbnail Image.png
Description
Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in

Transition metal di- and tri-halides (TMH) have recently gathered research attention owing to their intrinsic magnetism all the way down to their two-dimensional limit. 2D magnets, despite being a crucial component for realizing van der Waals heterostructures and devices with various functionalities, were not experimentally proven until very recently in 2017. The findings opened up enormous possibilities for studying new quantum states of matter that can enable potential to design spintronic, magnetic memory, data storage, sensing, and topological devices. However, practical applications in modern technologies demand materials with various physical and chemical properties such as electronic, optical, structural, catalytic, magnetic etc., which cannot be found within single material systems. Considering that compositional modifications in 2D systems lead to significant changes in properties due to the high anisotropy inherent to their crystallographic structure, this work focuses on alloying of TMH compounds to explore the potentials for tuning their properties. In this thesis, the ternary cation alloys of Co(1-x)Ni(x)Cl(2) and Mo(1-x)Cr(x)Cl(3) were synthesized via chemical vapor transport at a various stoichiometry. Their compositional, structural, and magnetic properties were studied using Energy Dispersive Spectroscopy, Raman Spectroscopy, X-Ray Diffraction, and Vibrating Sample Magnetometry. It was found that completely miscible ternary alloys of Co(1-x)Ni(x)Cl(2) show an increasing Néel temperature with nickel concentration. The Mo(1-x)Cr(x)Cl(3) alloy shows potential magnetic phase changes induced by the incorporation of molybdenum species within the host CrCl3 lattice. Magnetic measurements give insight into potential antiferromagnetic to ferromagnetic transition with molybdenum incorporation, accompanied by a shift in the magnetic easy-axis from parallel to perpendicular. Phase separation was found in the Fe(1-x)Cr(x)Cl(3) ternary alloy indicating that crystallographic structure compatibility plays an essential role in determining the miscibility of two parent compounds. Alloying across two similar (TMH) compounds appears to yield predictable results in properties as in the case of Co(1-x)Ni(x)Cl(2), while more exotic transitions, as in the case of Mo(1-x)Cr(x)Cl(3), can emerge by alloying dissimilar compounds. When dissimilarity reaches a certain limit, as with Fe(1-x)Cr(x)Cl(3), phase separation becomes more favorable. Future studies focusing on magnetic and structural phase transitions will reveal more insight into the effect of alloying in these TMH systems.
ContributorsKolari, Pranvera (Author) / Tongay, Sefaattin (Thesis advisor) / Jiao, Yang (Committee member) / Muhich, Christopher (Committee member) / Arizona State University (Publisher)
Created2020
165027-Thumbnail Image.png
Description

The recent discoveries of 2D van der Waals (vdW) materials have led to the realization of 2D magnetic crystals. Previously debated and thought impossible, transition metal halides (TMH) have given rise to layer dependent magnetism. Using these TMH as a basis, an alloy composing of Fe1-xNixCl2 (where 0 ≤ x

The recent discoveries of 2D van der Waals (vdW) materials have led to the realization of 2D magnetic crystals. Previously debated and thought impossible, transition metal halides (TMH) have given rise to layer dependent magnetism. Using these TMH as a basis, an alloy composing of Fe1-xNixCl2 (where 0 ≤ x ≤ 1) was grown using chemical vapor transport. The intrigue for this alloy composition stems from the interest in spin canting and magnet moment behavior since NiCl2 has in-plane ferromagnetism whereas FeCl2 has out-of-plane ferromagnetism. While in its infancy, this project lays out a foundation to fully develop and characterize this TMH via cationic alloying. To study the magnetic properties of this alloy system, Vibrating Sample Magnetometry was employed extensively to measure the magnetism as a function of temperature as well as applied magnetic field. Future work with use a combination of X-Ray Diffraction, Raman, Scanning Electron Microscopy, and Energy-Dispersive X-Ray Spectroscopy Mapping to verify homogeneous alloying rather than phase separation. Additionally, ellipsometry will be used with Kramer-Kronig relations to extract the dielectric constant from Fe1-xNixCl2. This work lays the foundation for future, fruitful work to prepare this vdW cationic alloy for eventual device applications.

ContributorsPovilus, Blake (Author) / Tongay, Sefaattin (Thesis director) / Yang, Sui (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2022-05