Matching Items (2,122)
Filtering by

Clear all filters

156592-Thumbnail Image.png
Description
In this dissertation two kinds of strongly interacting fermionic systems were studied: cold atomic gases and nucleon systems. In the first part I report T=0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. I investigate how vortex core structure properties

In this dissertation two kinds of strongly interacting fermionic systems were studied: cold atomic gases and nucleon systems. In the first part I report T=0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. I investigate how vortex core structure properties behave over the BEC-BCS crossover. The vortex excitation energy, density profiles, and vortex core properties related to the current are calculated. A density suppression at the vortex core on the BCS side of the crossover and a depleted core on the BEC limit is found. Size-effect dependencies in the disk geometry were carefully studied. In the second part of this dissertation I turn my attention to a very interesting problem in nuclear physics. In most simulations of nonrelativistic nuclear systems, the wave functions are found by solving the many-body Schrödinger equations, and they describe the quantum-mechanical amplitudes of the nucleonic degrees of freedom. In those simulations the pionic contributions are encoded in nuclear potentials and electroweak currents, and they determine the low-momentum behavior. By contrast, in this work I present a novel quantum Monte Carlo formalism in which both relativistic pions and nonrelativistic nucleons are explicitly included in the quantum-mechanical states of the system. I report the renormalization of the nucleon mass as a function of the momentum cutoff, an Euclidean time density correlation function that deals with the short-time nucleon diffusion, and the pion cloud density and momentum distributions. In the two nucleon sector the interaction of two static nucleons at large distances reduces to the one-pion exchange potential, and I fit the low-energy constants of the contact interactions to reproduce the binding energy of the deuteron and two neutrons in finite volumes. I conclude by showing that the method can be readily applied to light-nuclei.
ContributorsMadeira, Lucas (Author) / Schmidt, Kevin E (Thesis advisor) / Alarcon, Ricardo (Committee member) / Beckstein, Oliver (Committee member) / Erten, Onur (Committee member) / Arizona State University (Publisher)
Created2018
157351-Thumbnail Image.png
Description
Seeking an upper limit of the Neutron Electric Dipole Moment (nEDM) is a test of charge-parity (CP) violation beyond the Standard Model. The present experimentally tested nEDM upper limit is 3x10^(26) e cm. An experiment to be performed at the Oak Ridge National Lab Spallation Neutron Source (SNS) facility seeks

Seeking an upper limit of the Neutron Electric Dipole Moment (nEDM) is a test of charge-parity (CP) violation beyond the Standard Model. The present experimentally tested nEDM upper limit is 3x10^(26) e cm. An experiment to be performed at the Oak Ridge National Lab Spallation Neutron Source (SNS) facility seeks to reach the 3x10^(28) e cm limit. The experiment is designed to probe for a dependence of the neutron's Larmor precession frequency on an applied electric eld. The experiment will use polarized helium-3

(3He) as a comagnetometer, polarization analyzer, and detector.

Systematic influences on the nEDM measurement investigated in this thesis include (a) room temperature measurements on polarized 3He in a measurement cell made from the same materials as the nEDM experiment, (b) research and development of the Superconducting QUantum Interference Devices (SQUID) which will be used in the nEDM experiment, (c) design contributions for an experiment with nearly all the same conditions as will be present in the nEDM experiment, and (d) scintillation studies in superfluid helium II generated from alpha particles which are fundamentally similar to the nEDM scintillation process. The result of this work are steps toward achievement of a new upper limit for the nEDM experiment at the SNS facility.
ContributorsDipert, Robert (Author) / Alarcon, Ricardo (Thesis advisor) / Chamberlin, Ralph (Committee member) / Golub, Robert (Committee member) / Chen, Tingyong (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2019
157133-Thumbnail Image.png
Description
Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$)

Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$) particles.

Such plasmas are called \textit{chiral}.

The effects include non-dissipative currents in external fields that could be present

even in quasi-equilibrium, such as the chiral magnetic (CME) and separation (CSE)

effects, as well as a number of inherently chiral collective modes

called the chiral magnetic (CMW) and vortical (CVW) waves.

Applications of chiral plasmas are truly interdisciplinary, ranging from

hot plasma filling the early Universe, to dense matter in neutron stars,

to electronic band structures in Dirac and Weyl semimetals, to quark-gluon plasma

produced in heavy-ion collisions.

The main focus of this dissertation is a search for traces of chiral physics

in the spectrum of collective modes in chiral plasmas.

I start from relativistic chiral kinetic theory and derive

first- and second-order chiral hydrodynamics.

Then I establish key features of an equilibrium state that describes many

physical chiral systems and use it to find the full spectrum of collective modes

in high-temperature and high-density cases.

Finally, I consider in detail the fate of the two inherently chiral waves, namely

the CMW and the CVW, and determine their detection prospects.

The main results of this dissertation are the formulation of a fully covariant

dissipative chiral hydrodynamics and the calculation of the spectrum of collective

modes in chiral plasmas.

It is found that the dissipative effects and dynamical electromagnetism play

an important role in most cases.

In particular, it is found that both the CMW and the CVW are heavily damped by the usual

Ohmic dissipation in charged plasmas and the diffusion effects in neutral plasmas.

These findings prompt a search for new physical observables in heavy-ion collisions,

as well as a revision of potential applications of chiral theories in

cosmology and solid-state physics.
ContributorsRybalka, Denys (Author) / Shovkovy, Igor (Thesis advisor) / Lunardini, Cecilia (Committee member) / Timmes, Francis (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2019
157327-Thumbnail Image.png
Description
The challenge of radiation therapy is to maximize the dose to the tumor while simultaneously minimizing the dose elsewhere. Proton therapy is well suited to this challenge due to the way protons slow down in matter. As the proton slows down, the rate of energy loss per unit path length

The challenge of radiation therapy is to maximize the dose to the tumor while simultaneously minimizing the dose elsewhere. Proton therapy is well suited to this challenge due to the way protons slow down in matter. As the proton slows down, the rate of energy loss per unit path length continuously increases leading to a sharp dose near the end of range. Unlike conventional radiation therapy, protons stop inside the patient, sparing tissue beyond the tumor. Proton therapy should be superior to existing modalities, however, because protons stop inside the patient, there is uncertainty in the range. “Range uncertainty” causes doctors to take a conservative approach in treatment planning, counteracting the advantages offered by proton therapy. Range uncertainty prevents proton therapy from reaching its full potential.

A new method of delivering protons, pencil-beam scanning (PBS), has become the new standard for treatment over the past few years. PBS utilizes magnets to raster scan a thin proton beam across the tumor at discrete locations and using many discrete pulses of typically 10 ms duration each. The depth is controlled by changing the beam energy. The discretization in time of the proton delivery allows for new methods of dose verification, however few devices have been developed which can meet the bandwidth demands of PBS.

In this work, two devices have been developed to perform dose verification and monitoring with an emphasis placed on fast response times. Measurements were performed at the Mayo Clinic. One detector addresses range uncertainty by measuring prompt gamma-rays emitted during treatment. The range detector presented in this work is able to measure the proton range in-vivo to within 1.1 mm at depths up to 11 cm in less than 500 ms and up to 7.5 cm in less than 200 ms. A beam fluence detector presented in this work is able to measure the position and shape of each beam spot. It is hoped that this work may lead to a further maturation of detection techniques in proton therapy, helping the treatment to reach its full potential to improve the outcomes in patients.
ContributorsHolmes, Jason M (Author) / Alarcon, Ricardo (Thesis advisor) / Bues, Martin (Committee member) / Galyaev, Eugene (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2019
155409-Thumbnail Image.png
Description
This work presents analysis and results for the NPDGamma experiment, measuring

the spin-correlated photon directional asymmetry in the $\vec{n}p\rightarrow

d\gamma$ radiative capture of polarized, cold neutrons on a parahydrogen

target. The parity-violating (PV) component of this asymmetry

$A_{\gamma,PV}$ is unambiguously related to the $\Delta I = 1$ component of

the hadronic weak interaction

This work presents analysis and results for the NPDGamma experiment, measuring

the spin-correlated photon directional asymmetry in the $\vec{n}p\rightarrow

d\gamma$ radiative capture of polarized, cold neutrons on a parahydrogen

target. The parity-violating (PV) component of this asymmetry

$A_{\gamma,PV}$ is unambiguously related to the $\Delta I = 1$ component of

the hadronic weak interaction due to pion exchange. Measurements in the second

phase of NPDGamma were taken at the Oak Ridge National Laboratory (ORNL)

Spallation Neutron Source (SNS) from late 2012 to early 2014, and then again in

the first half of 2016 for an unprecedented level of statistics in order to

obtain a measurement that is precise with respect to theoretical predictions of

$A_{\gamma,PV}=O(10^{-8})$. Theoretical and experimental background,

description of the experimental apparatus, analysis methods, and results for

the high-statistics measurements are given.
ContributorsBlyth, David (Author) / Alarcon, Ricardo O (Thesis advisor) / Ritchie, Barry G. (Committee member) / Comfort, Joseph R. (Committee member) / Schmidt, Kevin E (Committee member) / Arizona State University (Publisher)
Created2017
168718-Thumbnail Image.png
Description
The spectra of predicted particles from elementary quark models (CQMs) are expansive, accurate for the low-lying spectra, but incomplete. The GlueX experiment at Jefferson Lab is a vehicle to study medium energy photoproduction of hadronic states. The primary goal of the GlueX collaboration is to study Quantum Chromodynamics (QCD, also

The spectra of predicted particles from elementary quark models (CQMs) are expansive, accurate for the low-lying spectra, but incomplete. The GlueX experiment at Jefferson Lab is a vehicle to study medium energy photoproduction of hadronic states. The primary goal of the GlueX collaboration is to study Quantum Chromodynamics (QCD, also known as the strong nuclear force) and the nature of quark confinement. The GlueX collaboration uses a polarized photon beam incident on a liquid hydrogen target (LH2) to investigate the aftermath of photon-proton interactions.The cascade baryons, denoted by Ξ, are defined by having two, second-generation, strange quarks with an additional first-generation light quark (u or d). Experimentally, few cascades have been discovered, which is the antithesis of what most models expect. The cascades have some favorable attributes but are difficult to detect because the production cross sections are small and direct production is unlikely. Fortunately, in the 12 GeV era of the GlueX experiment, there is sufficient energy, beam time and data analysis tools for the detection of excited cascade states and their properties. From the reaction γp→K^+ K^+ Ξ^- π^0, the invariant mass spectra of Ξ^- π^0 system was surveyed for new possible resonances. The invariant mass spectrum has a strong Ξ(1530) signal with other smaller resonances throughout the spectrum. Preliminary cross sections for the Ξ(1530) that was photoproduced from the proton are presented at energies never before explored. While the Ξ(1530) couples almost exclusively to the Ξπ channel, there is an easily identifiable Ξ(1690) signal decaying Ξπ. Through the use of a simultaneous fitting routing of the Ξ*- mass spectra, I was able to observe the Ξ(1690) decaying to the KΛ, as well as to the Ξ-π0 branch. With additional statistics, a measurement of the branching ratio should be possible. Lastly, a partial wave analysis (PWA) was completed to verify that the total angular momentum of Ξ(1530) is J = 3/2 and consistent with having positive parity. Additionally, there is evidence of a potentially interesting feature slightly above the mass of the Ξ(1530) that should be more fully explored as new GlueX data becomes available.
ContributorsSumner, Brandon Christopher Lamont (Author) / Dugger, Michael (Thesis advisor) / Ritchie, Barry (Committee member) / Lebed, Richard (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2022
174861-Thumbnail Image.jpg
Created1925-19-39 (uncertain)
174864-Thumbnail Image.jpg
Created1922
174868-Thumbnail Image.jpg
Created1934
174871-Thumbnail Image.jpg
Created1922