Matching Items (4)

158278-Thumbnail Image.png

Generalized Domain Adaptation for Visual Domains

Description

Humans have a great ability to recognize objects in different environments irrespective of their variations. However, the same does not apply to machine learning models which are unable to generalize

Humans have a great ability to recognize objects in different environments irrespective of their variations. However, the same does not apply to machine learning models which are unable to generalize to images of objects from different domains. The generalization of these models to new data is constrained by the domain gap. Many factors such as image background, image resolution, color, camera perspective and variations in the objects are responsible for the domain gap between the training data (source domain) and testing data (target domain). Domain adaptation algorithms aim to overcome the domain gap between the source and target domains and learn robust models that can perform well across both the domains.

This thesis provides solutions for the standard problem of unsupervised domain adaptation (UDA) and the more generic problem of generalized domain adaptation (GDA). The contributions of this thesis are as follows. (1) Certain and Consistent Domain Adaptation model for closed-set unsupervised domain adaptation by aligning the features of the source and target domain using deep neural networks. (2) A multi-adversarial deep learning model for generalized domain adaptation. (3) A gating model that detects out-of-distribution samples for generalized domain adaptation.

The models were tested across multiple computer vision datasets for domain adaptation.

The dissertation concludes with a discussion on the proposed approaches and future directions for research in closed set and generalized domain adaptation.

Contributors

Agent

Created

Date Created
  • 2020

157587-Thumbnail Image.png

Learning from task heterogeneity in social media

Description

In recent years, the rise in social media usage both vertically in terms of the number of users by platform and horizontally in terms of the number of platforms per

In recent years, the rise in social media usage both vertically in terms of the number of users by platform and horizontally in terms of the number of platforms per user has led to data explosion.

User-generated social media content provides an excellent opportunity to mine data of interest and to build resourceful applications. The rise in the number of healthcare-related social media platforms and the volume of healthcare knowledge available online in the last decade has resulted in increased social media usage for personal healthcare. In the United States, nearly ninety percent of adults, in the age group 50-75, have used social media to seek and share health information. Motivated by the growth of social media usage, this thesis focuses on healthcare-related applications, study various challenges posed by social media data, and address them through novel and effective machine learning algorithms.

The major challenges for effectively and efficiently mining social media data to build functional applications include: (1) Data reliability and acceptance: most social media data (especially in the context of healthcare-related social media) is not regulated and little has been studied on the benefits of healthcare-specific social media; (2) Data heterogeneity: social media data is generated by users with both demographic and geographic diversity; (3) Model transparency and trustworthiness: most existing machine learning models for addressing heterogeneity are considered as black box models, not many providing explanations for why they do what they do to trust them.

In response to these challenges, three main research directions have been investigated in this thesis: (1) Analyzing social media influence on healthcare: to study the real world impact of social media as a source to offer or seek support for patients with chronic health conditions; (2) Learning from task heterogeneity: to propose various models and algorithms that are adaptable to new social media platforms and robust to dynamic social media data, specifically on modeling user behaviors, identifying similar actors across platforms, and adapting black box models to a specific learning scenario; (3) Explaining heterogeneous models: to interpret predictive models in the presence of task heterogeneity. In this thesis, novel algorithms with theoretical analysis from various aspects (e.g., time complexity, convergence properties) have been proposed. The effectiveness and efficiency of the proposed algorithms is demonstrated by comparison with state-of-the-art methods and relevant case studies.

Contributors

Agent

Created

Date Created
  • 2019

156430-Thumbnail Image.png

Learning Transferable Data Representations Using Deep Generative Models

Description

Machine learning models convert raw data in the form of video, images, audio,

text, etc. into feature representations that are convenient for computational process-

ing. Deep neural networks have proven to be

Machine learning models convert raw data in the form of video, images, audio,

text, etc. into feature representations that are convenient for computational process-

ing. Deep neural networks have proven to be very efficient feature extractors for a

variety of machine learning tasks. Generative models based on deep neural networks

introduce constraints on the feature space to learn transferable and disentangled rep-

resentations. Transferable feature representations help in training machine learning

models that are robust across different distributions of data. For example, with the

application of transferable features in domain adaptation, models trained on a source

distribution can be applied to a data from a target distribution even though the dis-

tributions may be different. In style transfer and image-to-image translation, disen-

tangled representations allow for the separation of style and content when translating

images.

This thesis examines learning transferable data representations in novel deep gen-

erative models. The Semi-Supervised Adversarial Translator (SAT) utilizes adversar-

ial methods and cross-domain weight sharing in a neural network to extract trans-

ferable representations. These transferable interpretations can then be decoded into

the original image or a similar image in another domain. The Explicit Disentangling

Network (EDN) utilizes generative methods to disentangle images into their core at-

tributes and then segments sets of related attributes. The EDN can separate these

attributes by controlling the ow of information using a novel combination of losses

and network architecture. This separation of attributes allows precise modi_cations

to speci_c components of the data representation, boosting the performance of ma-

chine learning tasks. The effectiveness of these models is evaluated across domain

adaptation, style transfer, and image-to-image translation tasks.

Contributors

Agent

Created

Date Created
  • 2018

155339-Thumbnail Image.png

Domain Adaptive Computational Models for Computer Vision

Description

The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested

The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source domain is transferred to a target domain in the form of learned models and efficient feature representations.

The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence.

Contributors

Agent

Created

Date Created
  • 2017