Matching Items (1)
Filtering by

Clear all filters

155475-Thumbnail Image.png
Description
In wild birds, the stress response can inhibit the activity of the innate immune system, which serves as the first line of defense against pathogens. By elucidating the mechanisms which regulate the interaction between stress and innate immunity, researchers may be able to predict when birds experience increased susceptibility to

In wild birds, the stress response can inhibit the activity of the innate immune system, which serves as the first line of defense against pathogens. By elucidating the mechanisms which regulate the interaction between stress and innate immunity, researchers may be able to predict when birds experience increased susceptibility to infections and can target specific mediators to mitigate stress-induced suppression of innate immune activity. Such elucidation is especially important for urban birds, such as the House Sparrow (Passer domesticus), because these birds experience higher pathogen prevalence and transmission when compared to birds in rural regions. I investigated the role of corticosterone (CORT) in stress-induced suppression of two measures of innate immune activity (complement- and natural antibody-mediated activity) in male House Sparrows. Corticosterone, the primary avian glucocorticoid, is elevated during the stress response and high levels of this hormone induce effects through the activation of cytosolic and membrane-bound glucocorticoid receptors (GR). My results demonstrate that CORT is necessary and sufficient for stress-induced suppression of complement-mediated activity, and that this relationship is consistent between years. Corticosterone, however, does not inhibit complement-mediated activity through cytosolic GR, and additional research is needed to confirm the involvement of membrane-bound GR. The role of CORT in stress-induced inhibition of natural antibody-mediated activity, however, remains puzzling. Stress-induced elevation of CORT can suppress natural antibody-mediated activity through the activation of cytosolic GR, but the necessity of this mechanism varies inter-annually. In other words, both CORT-dependent and CORT-independent mechanisms may inhibit natural antibody-mediated activity during stress in certain years, but the causes of this inter-annual variation are not known. Previous studies have indicated that changes in the pathogen environment or food availability can alter regulation of innate immunity, but further research is needed to test these hypotheses. Overall, my dissertation demonstrates that stress inhibits innate immunity through several mechanisms, but environmental pressures may influence this inhibitory relationship.
ContributorsGao, Sisi (Author) / Deviche, Pierre (Thesis advisor) / DeNardo, Dale (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Moore, Michael C. (Committee member) / Arizona State University (Publisher)
Created2017