Matching Items (2)
Filtering by

Clear all filters

157822-Thumbnail Image.png
Description
The world has been continuously urbanized and is currently accommodating more than half of the human population. Despite that cities cover only less than 3% of the Earth’s land surface area, they emerged as hotspots of anthropogenic activities. The drastic land use changes, complex three-dimensional urban terrain, and anthropogenic heat

The world has been continuously urbanized and is currently accommodating more than half of the human population. Despite that cities cover only less than 3% of the Earth’s land surface area, they emerged as hotspots of anthropogenic activities. The drastic land use changes, complex three-dimensional urban terrain, and anthropogenic heat emissions alter the transport of mass, heat, and momentum, especially within the urban canopy layer. As a result, cities are confronting numerous environmental challenges such as exacerbated heat stress, frequent air pollution episodes, degraded water quality, increased energy consumption and water use, etc. Green infrastructure, in particular, the use of trees, has been proved as an effective means to improve urban environmental quality in existing research. However, quantitative evaluations of the efficacy of urban trees in regulating air quality and thermal environment are impeded by the limited temporal and spatial scales in field measurements and the deficiency in numerical models.

This dissertation aims to advance the simulation of realistic functions of urban trees in both microscale and mesoscale numerical models, and to systematically evaluate the cooling capacity of urban trees under thermal extremes. A coupled large-eddy simulation–Lagrangian stochastic modeling framework is developed for the complex urban environment and is used to evaluate the impact of urban trees on traffic-emitted pollutants. Results show that the model is robust for capturing the dispersion of urban air pollutants and how strategically implemented urban trees can reduce vehicle-emitted pollution. To evaluate the impact of urban trees on the thermal environment, the radiative shading effect of trees are incorporated into the integrated Weather Research and Forecasting model. The mesoscale model is used to simulate shade trees over the contiguous United States, suggesting how the efficacy of urban trees depends on geographical and climatic conditions. The cooling capacity of urban trees and its response to thermal extremes are then quantified for major metropolitans in the United States based on remotely sensed data. It is found the nonlinear temperature dependence of the cooling capacity remarkably resembles the thermodynamic liquid-water–vapor equilibrium. The findings in this dissertation are informative to evaluating and implementing urban trees, and green infrastructure in large, as an important urban planning strategy to cope with emergent global environmental changes.
ContributorsWang, Chenghao (Author) / Wang, Zhihua (Thesis advisor) / Myint, Soe W. (Committee member) / Huang, Huei-Ping (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2019
157548-Thumbnail Image.png
Description
Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more

Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more localized heat mitigation understanding. In addition, over-reliance on evidence from temperate regions is disconnected from the actualities of extreme bioclimatic dynamics found in HUDs. This dissertation is an integration of a series of studies that inform urban climate relationships specific to HUDs. This three-paper dissertation demonstrates heat mitigation aspirational goals from actualities, depicts local urban thermal drivers in Kuwait, and then tests morphological sensitivity of selected thermal modulation strategies in one neighborhood in Kuwait City.

The first paper is based on a systematic literature review where evidence from morphological mitigation strategies in HUDs were critically reviewed, synthesized and integrated. Metrics, measurements, and methods were extracted to examine the applicability of the different strategies, and a content synthesis identified the levels of strategy success. Collective challenges and uncertainties were interpreted to compare aspirational goals from actualities of morphological mitigation strategies.

The second paper unpacks the relationship of urban morphological attributes in influencing thermal conditions to assess latent magnitudes of heat amelioration strategies. Mindful of the challenges presented in the first study, a 92-day summer field-measurement campaign captured system dynamics of urban thermal stimuli within sub-diurnal phenomena. A composite data set of sub-hourly air temperature measurements with sub-meter morphological attributes was built, statistically analyzed, and modeled. Morphological mediation effects were found to vary hourly with different patterns under varying weather conditions in non-linear associations. Results suggest mitigation interventions be investigated and later tested on a site- use and time-use basis.

The third paper concludes with a simulation-based study to conform on the collective findings of the earlier studies. The microclimate model ENVI-met 4.4, combined with field measurements, was used to simulate the effect of rooftop shade-sails in cooling the near ground thermal environment. Results showed significant cooling effects and thus presented a novel shading approach that challenges orthodox mitigation strategies in HUDs.
ContributorsAlKhaled, Saud R A H (Author) / Coseo, Paul (Thesis advisor) / Brazel, Anthony (Thesis advisor) / Middel, Ariane (Committee member) / Cheng, Chingwen (Committee member) / Arizona State University (Publisher)
Created2019