Matching Items (2)
Filtering by

Clear all filters

156331-Thumbnail Image.png
Description
Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.
ContributorsHenderson, Christopher (Author) / Bansal, Ajay (Thesis advisor) / Lindquist, Timothy (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2018
165594-Thumbnail Image.png
Description

With the recent focus of attention towards remote work and mobile computing, the possibility of taking a powerful workstation wherever needed is enticing. However, even emerging laptops today struggle to compete with desktops in terms of cost, maintenance, and future upgrades. The price point of a powerful laptop is considerably

With the recent focus of attention towards remote work and mobile computing, the possibility of taking a powerful workstation wherever needed is enticing. However, even emerging laptops today struggle to compete with desktops in terms of cost, maintenance, and future upgrades. The price point of a powerful laptop is considerably higher compared to an equally powerful desktop computer, and most laptops are manufactured in a way that makes upgrading parts of the machine difficult or impossible, forcing a complete purchase in the event of failure or a component needing an upgrade. In the case where someone already owns a desktop computer and must be mobile, instead of needing to purchase a second device at full price, it may be possible to develop a low-cost computer that has just enough power to connect to the existing desktop and run all processing there, using the mobile device only as a user interface. This thesis will explore the development of a custom PCB that utilizes a Raspberry Pi Computer Module 4, as well as the development of a fork of the Open Source project Moonlight to stream a host machine's screen to a remote client. This implementation will be compared against other existing remote desktop solutions to analyze it's performance and quality.

ContributorsLathrum, Dylan (Author) / Heinrichs, Robert (Thesis director) / Acuna, Ruben (Committee member) / Jordan, Shawn (Committee member) / Barrett, The Honors College (Contributor) / Software Engineering (Contributor)
Created2022-05