Matching Items (3)

158834-Thumbnail Image.png

Decentralized Control of Collective Transport by Multi-Robot Systems with Minimal Information

Description

One potential application of multi-robot systems is collective transport, a task in which multiple mobile robots collaboratively transport a payload that is too large or heavy to be carried by

One potential application of multi-robot systems is collective transport, a task in which multiple mobile robots collaboratively transport a payload that is too large or heavy to be carried by a single robot. Numerous control schemes have been proposed for collective transport in environments where robots can localize themselves (e.g., using GPS) and communicate with one another, have information about the payload's geometric and dynamical properties, and follow predefined robot and/or payload trajectories. However, these approaches cannot be applied in uncertain environments where robots do not have reliable communication and GPS and lack information about the payload. These conditions characterize a variety of applications, including construction, mining, assembly in space and underwater, search-and-rescue, and disaster response.
Toward this end, this thesis presents decentralized control strategies for collective transport by robots that regulate their actions using only their local sensor measurements and minimal prior information. These strategies can be implemented on robots that have limited or absent localization capabilities, do not explicitly exchange information, and are not assigned predefined trajectories. The controllers are developed for collective transport over planar surfaces, but can be extended to three-dimensional environments.

This thesis addresses the above problem for two control objectives. First, decentralized controllers are proposed for velocity control of collective transport, in which the robots must transport a payload at a constant velocity through an unbounded domain that may contain strictly convex obstacles. The robots are provided only with the target transport velocity, and they do not have global localization or prior information about any obstacles in the environment. Second, decentralized controllers are proposed for position control of collective transport, in which the robots must transport a payload to a target position through a bounded or unbounded domain that may contain convex obstacles. The robots are subject to the same constraints as in the velocity control scenario, except that they are assumed to have global localization. Theoretical guarantees for successful execution of the task are derived using techniques from nonlinear control theory, and it is shown through simulations and physical robot experiments that the transport objectives are achieved with the proposed controllers.

Contributors

Agent

Created

Date Created
  • 2020

158648-Thumbnail Image.png

Coordinated Navigation and Localization of an Autonomous Underwater Vehicle Using an Autonomous Surface Vehicle in the OpenUAV Simulation Framework

Description

The need for incorporating game engines into robotics tools becomes increasingly crucial as their graphics continue to become more photorealistic. This thesis presents a simulation framework, referred to as OpenUAV,

The need for incorporating game engines into robotics tools becomes increasingly crucial as their graphics continue to become more photorealistic. This thesis presents a simulation framework, referred to as OpenUAV, that addresses cloud simulation and photorealism challenges in academic and research goals. In this work, OpenUAV is used to create a simulation of an autonomous underwater vehicle (AUV) closely following a moving autonomous surface vehicle (ASV) in an underwater coral reef environment. It incorporates the Unity3D game engine and the robotics software Gazebo to take advantage of Unity3D's perception and Gazebo's physics simulation. The software is developed as a containerized solution that is deployable on cloud and on-premise systems.

This method of utilizing Gazebo's physics and Unity3D perception is evaluated for a team of marine vehicles (an AUV and an ASV) in a coral reef environment. A coordinated navigation and localization module is presented that allows the AUV to follow the path of the ASV. A fiducial marker underneath the ASV facilitates pose estimation of the AUV, and the pose estimates are filtered using the known dynamical system model of both vehicles for better localization. This thesis also investigates different fiducial markers and their detection rates in this Unity3D underwater environment. The limitations and capabilities of this Unity3D perception and Gazebo physics approach are examined.

Contributors

Agent

Created

Date Created
  • 2020

154497-Thumbnail Image.png

Development and analysis of stochastic boundary coverage strategies for multi-robot systems

Description

Robotic technology is advancing to the point where it will soon be feasible to deploy massive populations, or swarms, of low-cost autonomous robots to collectively perform tasks over large domains

Robotic technology is advancing to the point where it will soon be feasible to deploy massive populations, or swarms, of low-cost autonomous robots to collectively perform tasks over large domains and time scales. Many of these tasks will require the robots to allocate themselves around the boundaries of regions or features of interest and achieve target objectives that derive from their resulting spatial configurations, such as forming a connected communication network or acquiring sensor data around the entire boundary. We refer to this spatial allocation problem as boundary coverage. Possible swarm tasks that will involve boundary coverage include cooperative load manipulation for applications in construction, manufacturing, and disaster response.

In this work, I address the challenges of controlling a swarm of resource-constrained robots to achieve boundary coverage, which I refer to as the problem of stochastic boundary coverage. I first examined an instance of this behavior in the biological phenomenon of group food retrieval by desert ants, and developed a hybrid dynamical system model of this process from experimental data. Subsequently, with the aid of collaborators, I used a continuum abstraction of swarm population dynamics, adapted from a modeling framework used in chemical kinetics, to derive stochastic robot control policies that drive a swarm to target steady-state allocations around multiple boundaries in a way that is robust to environmental variations.

Next, I determined the statistical properties of the random graph that is formed by a group of robots, each with the same capabilities, that have attached to a boundary at random locations. I also computed the probability density functions (pdfs) of the robot positions and inter-robot distances for this case.

I then extended this analysis to cases in which the robots have heterogeneous communication/sensing radii and attach to a boundary according to non-uniform, non-identical pdfs. I proved that these more general coverage strategies generate random graphs whose probability of connectivity is Sharp-P Hard to compute. Finally, I investigated possible approaches to validating our boundary coverage strategies in multi-robot simulations with realistic Wi-fi communication.

Contributors

Agent

Created

Date Created
  • 2016