Matching Items (2)
Description

Many organisms associate environmental events that occur together and can predict the outcome of the event. This ability is termed associative learning. Through associative learning, organisms are able to change their behavior to increase their fitness and survival. However, little is known about how these same learning processes proceed when

Many organisms associate environmental events that occur together and can predict the outcome of the event. This ability is termed associative learning. Through associative learning, organisms are able to change their behavior to increase their fitness and survival. However, little is known about how these same learning processes proceed when subjects are not alone, but in a group. The behavior of conspecifics could serve as a cue for learning, similar to stimuli during individual learning. This study was designed to compare learning across rats exposed to a simple simultaneous discrimination task, either in an individual or a social learning setting. Sixteen rats were trained to choose between two corridors differentiated by visual stimuli (flashing or steady light). One of the two cues signaled that food was available in the feeders at the end of the corridor. Half of the rats were trained individually and the other half were trained in groups of four. To compare the effect of the social training setting, all rats were tested independently and in a group. Next, contingencies were reversed and the previously non-reinforced cue now signaled the availability of food, and rats were again tested individually and in a group. The results suggest that the social setting interferes with the rats’ ability to make associations but makes the performance of the rats less sensitive to changes in their learning environment.

ContributorsBower, Carter (Author) / Sanabria, Federico (Thesis director) / Santos, Cristina (Committee member) / Verpeut, Jessica (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2023-05
154351-Thumbnail Image.png
Description
Watanabe, Náñez, and Sasaki (2001) introduced a phenomenon they named “task-irrelevant perceptual learning” in which near-threshold stimuli that are not essential to a given task can be associatively learned when consistently and concurrently paired with the focal task. The present study employs a visual paired-shapes recognition task, using colored

Watanabe, Náñez, and Sasaki (2001) introduced a phenomenon they named “task-irrelevant perceptual learning” in which near-threshold stimuli that are not essential to a given task can be associatively learned when consistently and concurrently paired with the focal task. The present study employs a visual paired-shapes recognition task, using colored polygon targets as salient attended focal stimuli, with the goal of comparing the increases in perceptual sensitivity observed when near-threshold stimuli are temporally paired in varying manners with focal targets. Experiment 1 separated and compared the target-acquisition and target-recognition phases and revealed that sensitivity improved most when the near-threshold motion stimuli were paired with the focal target-acquisition phase. The parameters of sensitivity improvement were motion detection, critical flicker fusion threshold (CFFT), and letter-orientation decoding. Experiment 2 tested perceptual learning of near-threshold stimuli when they were offset from the focal stimuli presentation by ±350 ms. Performance improvements in motion detection, CFFT, and decoding were significantly greater for the group in which near-threshold motion was presented after the focal target. Experiment 3 showed that participants with reading difficulties who were exposed to focal target-acquisition training improved in sensitivity in all visual measures. Experiment 4 tested whether near-threshold stimulus learning occurred cross-modally with auditory stimuli and served as an active control for the first, second, and third experiments. Here, a tone was paired with all focal stimuli, but the tone was 1 Hz higher or lower when paired with the targeted focal stimuli associated with recognition. In Experiment 4, there was no improvement in visual sensitivity, but there was significant improvement in tone discrimination. Thus, this study, as a whole, confirms that pairing near-threshold stimuli with focal stimuli can improve performance in just tone discrimination, or in motion detection, CFFT, and letter decoding. Findings further support the thesis that the act of trying to remember a focal target also elicited greater associative learning of correlated near-threshold stimulus than the act of recognizing a target. Finally, these findings support that we have developed a visual learning paradigm that may potentially mitigate some of the visual deficits that are often experienced by the reading disabled.
ContributorsHolloway, Steven Robert (Author) / Mcbeath, Michael K (Thesis advisor) / Macknik, Stephen (Committee member) / Homa, Donald (Committee member) / Náñez, Sr., José E (Committee member) / Arizona State University (Publisher)
Created2016