Matching Items (2)
Filtering by

Clear all filters

155987-Thumbnail Image.png
Description
A volunteered geographic information system, e.g., OpenStreetMap (OSM), collects data from volunteers to generate geospatial maps. To keep the map consistent, volunteers are expected to perform the tedious task of updating the underlying geospatial data at regular intervals. Such a map curation step takes time and considerable human effort. In

A volunteered geographic information system, e.g., OpenStreetMap (OSM), collects data from volunteers to generate geospatial maps. To keep the map consistent, volunteers are expected to perform the tedious task of updating the underlying geospatial data at regular intervals. Such a map curation step takes time and considerable human effort. In this thesis, we propose a framework that improves the process of updating geospatial maps by automatically identifying road changes from user-generated GPS traces. Since GPS traces can be sparse and noisy, the proposed framework validates the map changes with the users before propagating them to a publishable version of the map. The proposed framework achieves up to four times faster map matching performance than the state-of-the-art algorithms with only 0.1-0.3% accuracy loss.
ContributorsVementala, Nikhil (Author) / Papotti, Paolo (Thesis advisor) / Sarwat, Mohamed (Thesis advisor) / Kasim, Selçuk Candan (Committee member) / Arizona State University (Publisher)
Created2017
154272-Thumbnail Image.png
Description
Similarity search in high-dimensional spaces is popular for applications like image

processing, time series, and genome data. In higher dimensions, the phenomenon of

curse of dimensionality kills the effectiveness of most of the index structures, giving

way to approximate methods like Locality Sensitive Hashing (LSH), to answer similarity

searches. In addition to range searches

Similarity search in high-dimensional spaces is popular for applications like image

processing, time series, and genome data. In higher dimensions, the phenomenon of

curse of dimensionality kills the effectiveness of most of the index structures, giving

way to approximate methods like Locality Sensitive Hashing (LSH), to answer similarity

searches. In addition to range searches and k-nearest neighbor searches, there

is a need to answer negative queries formed by excluded regions, in high-dimensional

data. Though there have been a slew of variants of LSH to improve efficiency, reduce

storage, and provide better accuracies, none of the techniques are capable of

answering queries in the presence of excluded regions.

This thesis provides a novel approach to handle such negative queries. This is

achieved by creating a prefix based hierarchical index structure. First, the higher

dimensional space is projected to a lower dimension space. Then, a one-dimensional

ordering is developed, while retaining the hierarchical traits. The algorithm intelligently

prunes the irrelevant candidates while answering queries in the presence of

excluded regions. While naive LSH would need to filter out the negative query results

from the main results, the new algorithm minimizes the need to fetch the redundant

results in the first place. Experiment results show that this reduces post-processing

cost thereby reducing the query processing time.
ContributorsBhat, Aneesha (Author) / Candan, Kasim Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sapino, Maria Luisa (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2016