Matching Items (2)
Filtering by

Clear all filters

155689-Thumbnail Image.png
Description
Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool

Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool that connects paper-based assessments to digital space. I designed a classroom study and collected data from ASU computer science classes. I tracked and modeled students' reviewing and reflecting behaviors based on the use of WPGA. I analyzed students' reviewing efforts, in terms of frequency, timing, and the associations with their academic performances. Results showed that students put extra emphasis in reviewing prior to the exams and the efforts demonstrated the desire to review formal assessments regardless of if they were graded for academic performance or for attendance. In addition, all students paid more attention on reviewing quizzes and exams toward the end of semester.
ContributorsHuang, Po-Kai (Author) / Hsiao, I-Han (Thesis advisor) / Nelson, Brian (Committee member) / VanLehn, Kurt (Committee member) / Arizona State University (Publisher)
Created2017
154253-Thumbnail Image.png
Description
Embedded assessment constantly updates a model of the student as the student works on instructional tasks. Accurate embedded assessment allows students, instructors and instructional systems to make informed decisions without requiring the student to stop instruction and take a test. This thesis describes the development and comparison of

Embedded assessment constantly updates a model of the student as the student works on instructional tasks. Accurate embedded assessment allows students, instructors and instructional systems to make informed decisions without requiring the student to stop instruction and take a test. This thesis describes the development and comparison of several student models for Dragoon, an intelligent tutoring system. All the models were instances of Bayesian Knowledge Tracing, a standard method. Several methods of parameterization and calibration were explored using two recently developed toolkits, FAST and BNT-SM that replaces constant-valued parameters with logistic regressions. The evaluation was done by calculating the fit of the models to data from human subjects and by assessing the accuracy of their assessment of simulated students. The student models created using node properties as subskills were superior to coarse-grained, skill-only models. Adding this extra level of representation to emission parameters was superior to adding it to transmission parameters. Adding difficulty parameters did not improve fit, contrary to standard practice in psychometrics.
ContributorsGrover, Sachin (Author) / VanLehn, Kurt (Thesis advisor) / Walker, Erin (Committee member) / Shiao, Ihan (Committee member) / Arizona State University (Publisher)
Created2015