Matching Items (2)
Filtering by

Clear all filters

156457-Thumbnail Image.png
Description
Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse

Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse events. Recent, exponential growth in research is now producing consensus on how to think about infrastructure resilience centered on definitions and models from influential organizations like the US National Academy of Sciences. Despite widespread efforts, massive infrastructure failures in 2017 demonstrate that resilience is still not working, raising the question: Are the ways people think about resilience producing resilient infrastructure systems?



This dissertation argues that established thinking harbors misconceptions about infrastructure systems that diminish attempts to improve their resilience. Widespread efforts based on the current canon focus on improving data analytics, establishing resilience goals, reducing failure probabilities, and measuring cascading losses. Unfortunately, none of these pursuits change the resilience of an infrastructure system, because none of them result in knowledge about how data is used, goals are set, or failures occur. Through the examination of each misconception, this dissertation results in practical, new approaches for infrastructure systems to respond to unforeseen failures via sensing, adapting, and anticipating processes. Specifically, infrastructure resilience is improved by sensing when data analytics include the modeler-in-the-loop, adapting to stress contexts by switching between multiple resilience strategies, and anticipating crisis coordination activities prior to experiencing a failure.

Overall, results demonstrate that current resilience thinking needs to change because it does not differentiate resilience from risk. The majority of research thinks resilience is a property that a system has, like a noun, when resilience is really an action a system does, like a verb. Treating resilience as a noun only strengthens commitment to risk-based practices that do not protect infrastructure from unknown events. Instead, switching to thinking about resilience as a verb overcomes prevalent misconceptions about data, goals, systems, and failures, and may bring a necessary, radical change to the way infrastructure is protected in the future.
ContributorsEisenberg, Daniel Alexander (Author) / Seager, Thomas P. (Thesis advisor) / Park, Jeryang (Thesis advisor) / Alderson, David L. (Committee member) / Lai, Ying-Cheng (Committee member) / Arizona State University (Publisher)
Created2018
154230-Thumbnail Image.png
Description
CubeSats offer a compelling pathway towards lowering the cost of interplanetary exploration missions thanks to their low mass and volume. This has been possible due to miniaturization of electronics and sensors and increased efficiency of photovoltaics. Interplanetary communication using radio signals requires large parabolic antennas on the spacecraft and

CubeSats offer a compelling pathway towards lowering the cost of interplanetary exploration missions thanks to their low mass and volume. This has been possible due to miniaturization of electronics and sensors and increased efficiency of photovoltaics. Interplanetary communication using radio signals requires large parabolic antennas on the spacecraft and this often exceeds the total volume of CubeSat spacecraft. Mechanical deployable antennas have been proposed that would unfurl to form a large parabolic dish. These antennas much like an umbrella has many mechanical moving parts, are complex and are prone to jamming. An alternative are inflatables, due to their tenfold savings in mass, large surface area and very high packing efficiency of 20:1. The present work describes the process of designing and building inflatable parabolic reflectors for small satellite radio communications in the X band.

Tests show these inflatable reflectors to provide significantly higher gain characteristics as compared to conventional antennas. This would lead to much higher data rates from low earth orbits and would provide enabling communication capabilities for small satellites in deeper space. This technology is critical to lowering costs of small satellites while enhancing their capabilities.

Principle design challenges with inflatable membranes are maintaining accurate desired shape, reliable deployment mechanism and outer space environment protection. The present work tackles each of the mentioned challenges and provides an



understanding towards future work. In the course of our experimentation we have been able to address these challenges using building techniques that evolved out of a matured understanding of the inflation process.

Our design is based on low cost chemical sublimates as inflation substances that use a simple mechanism for inflation. To improve the reliability of the inflated shape, we use UV radiation hardened polymer support structures. The novelty of the design lies in its simplicity, low cost and high reliability. The design and development work provides an understanding towards extending these concepts to much larger deployable structures such as solar sails, inflatable truss structures for orbit servicing and large surface area inflatables for deceleration from hypersonic speeds when re-entering the atmosphere.
ContributorsChandra, Aman (Author) / Thangavelautham, Jekanthan (Thesis advisor) / Huang, Huei Ping (Thesis advisor) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2015