Matching Items (4)
154184-Thumbnail Image.png
Description
The rapid progress of solution-phase synthesis has led colloidal nanocrystals one of the most versatile nanoscale materials, provided opportunities to tailor material's properties, and boosted related technological innovations. Colloidal nanocrystal-based materials have been demonstrated success in a variety of applications, such as LEDs, electronics, solar cells and thermoelectrics. In each

The rapid progress of solution-phase synthesis has led colloidal nanocrystals one of the most versatile nanoscale materials, provided opportunities to tailor material's properties, and boosted related technological innovations. Colloidal nanocrystal-based materials have been demonstrated success in a variety of applications, such as LEDs, electronics, solar cells and thermoelectrics. In each of these applications, the thermal transport property plays a big role. An undesirable temperature rise due to inefficient heat dissipation could lead to deleterious effects on devices' performance and lifetime. Hence, the first project is focused on investigating the thermal transport in colloidal nanocrystal solids. This study answers the question that how the molecular structure of nanocrystals affect the thermal transport, and provides insights for future device designs. In particular, PbS nanocrystals is used as a monitoring system, and the core diameter, ligand length and ligand binding group are systematically varied to study the corresponding effect on thermal transport.

Next, a fundamental study is presented on the phase stability and solid-liquid transformation of metallic (In, Sn and Bi) colloidal nanocrystals. Although the phase change of nanoparticles has been a long-standing research topic, the melting behavior of colloidal nanocrytstals is largely unexplored. In addition, this study is of practical importance to nanocrystal-based applications that operate at elevated temperatures. Embedding colloidal nanocrystals into thermally-stable polymer matrices allows preserving nanocrystal size throughout melt-freeze cycles, and therefore enabling observation of stable melting features. Size-dependent melting temperature, melting enthalpy and melting entropy have all been measured and discussed.

In the next two chapters, focus has been switched to developing colloidal nanocrystal-based phase change composites for thermal energy storage applications. In Chapter 4, a polymer matrix phase change nanocomposite has been created. In this composite, the melting temperature and energy density could be independently controlled by tuning nanocrystal diameter and volume fractions. In Chapter 5, a solution-phase synthesis on metal matrix-metal nanocrytal composite is presented. This approach enables excellent morphological control over nanocrystals and demonstrated a phase change composite with a thermal conductivity 2 - 3 orders of magnitude greater than typical phase change materials, such as organics and molten salts.
ContributorsLiu, Minglu (Author) / Wang, Robert Y (Thesis advisor) / Wang, Liping (Committee member) / Rykaczewski, Konrad (Committee member) / Phelan, Patrick (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2015
171541-Thumbnail Image.png
Description
The thermal conductivity of cadmium sulfide (CdS) colloidal nanocrystals (NCs) and magic-sized clusters (MSCs) have been investigated in this work. It is well documented in the literature that the thermal conductivity of colloidal nanocrystal assemblies decreases as diameter decreases. However, the extrapolation of this size dependence does not apply to

The thermal conductivity of cadmium sulfide (CdS) colloidal nanocrystals (NCs) and magic-sized clusters (MSCs) have been investigated in this work. It is well documented in the literature that the thermal conductivity of colloidal nanocrystal assemblies decreases as diameter decreases. However, the extrapolation of this size dependence does not apply to magic-sized clusters. Magic-sized clusters have an anomalously high thermal conductivity relative to the extrapolated size-dependence trend line for the colloidal nanocrystals. This anomalously high thermal conductivity could probably result from the monodispersity of magic-sized clusters. To support this conjecture, a method of deliberately eliminating the monodispersity of MSCs by mixing them with colloidal nanocrystals was performed. Experiment results showed that mixtures of nanocrystals and MSCs have a lower thermal conductivity that falls approximately on the extrapolated trendline for colloidal nanocrystal thermal conductivity as a function of size.
ContributorsSun, Ming-Hsien (Author) / Wang, Robert (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2022
158173-Thumbnail Image.png
Description
Satisfying the ever-increasing demand for electricity while maintaining sustainability and eco-friendliness has become a key challenge for humanity. Around 70% of energy is rejected as heat from different sectors. Thermoelectric energy harvesting has immense potential to convert this heat into electricity in an environmentally friendly manner. However, low efficiency and

Satisfying the ever-increasing demand for electricity while maintaining sustainability and eco-friendliness has become a key challenge for humanity. Around 70% of energy is rejected as heat from different sectors. Thermoelectric energy harvesting has immense potential to convert this heat into electricity in an environmentally friendly manner. However, low efficiency and high manufacturing costs inhibit the widespread application of thermoelectric devices. In this work, an inexpensive solution processing technique and a nanostructuring approach are utilized to create thermoelectric materials. Specifically, the solution-state and solid-state structure of a lead selenide (PbSe) precursor is characterized by different spectroscopic techniques. This precursor has shown promise for preparing thermoelectric lead selenide telluride (PbSexTe1-x) thin films. The precursor was prepared by reacting lead and diphenyl diselenide in different solvents. The characterization reveals the formation of a solvated lead(II) phenylselenolate complex which deepens the understanding of the formation of these precursors. Further, using slightly different chemistry, a low-temperature tin(II) selenide (SnSe) precursor was synthesized and identified as tin(IV) methylselenolate. The low transformation temperature makes it compatible with colloidal PbSe nanocrystals. The colloidal PbSe nanocrystals were chemically treated with a SnSe precursor and subjected to mild annealing to form conductive nanocomposites. Finally, the room temperature thermoelectric characterization of solution-processed PbSexTe1-x thin films is presented. This is followed by a setup development for temperature-dependent measurements and preliminary temperature-dependent measurements on PbSexTe1-x thin films.
ContributorsVartak, Prathamesh Bhalchandra (Author) / Wang, Robert Y. (Thesis advisor) / Wang, Liping (Committee member) / Trovitch, Ryan J. (Committee member) / Tongay, Sefaattin (Committee member) / Goodnick, Stephen M. (Committee member) / Arizona State University (Publisher)
Created2020
161265-Thumbnail Image.png
Description
Colloidal nanocrystals (NCs) are promising candidates for a wide range of applications (electronics, optoelectronics, photovoltaics, thermoelectrics, etc.). Mechanical and thermal transport property play very important roles in all of these applications. On one hand, mechanical robustness and high thermal conductivity are desired in electronics, optoelectronics, and photovoltaics. This improves thermomechanical

Colloidal nanocrystals (NCs) are promising candidates for a wide range of applications (electronics, optoelectronics, photovoltaics, thermoelectrics, etc.). Mechanical and thermal transport property play very important roles in all of these applications. On one hand, mechanical robustness and high thermal conductivity are desired in electronics, optoelectronics, and photovoltaics. This improves thermomechanical stability and minimizes the temperature rise during the device operation. On the other hand, low thermal conductivity is desired for higher thermoelectric figure of merit (ZT). This dissertation demonstrates that ligand structure and nanocrystal ordering are the primary determining factors for thermal transport and mechanical properties in colloidal nanocrystal assemblies. To eliminate the mechanics and thermal transport barrier, I first propose a ligand crosslinking method to improve the thermal transport across the ligand-ligand interface and thus increasing the overall thermal conductivity of NC assemblies. Young’s modulus of nanocrystal solids also increases simultaneously upon ligand crosslinking. My thermal transport measurements show that the thermal conductivity of the iron oxide NC solids increases by a factor of 2-3 upon ligand crosslinking. Further, I demonstrate that, though with same composition, long-range ordered nanocrystal superlattices possess higher mechanical and thermal transport properties than disordered nanocrystal thin films. Experimental measurements along with theoretical modeling indicate that stronger ligand-ligand interaction in NC superlattice accounts for the improved mechanics and thermal transport. This suggests that NC/ligand arranging order also plays important roles in determining mechanics and thermal transport properties of NC assemblies. Lastly, I show that inorganic ligand functionalization could lead to tremendous mechanical enhancement (a factor of ~60) in NC solids. After ligand exchange and drying, the short inorganic Sn2S64- ligands dissociate into a few atomic layers of amorphous SnS2 at room temperature and interconnects the neighboring NCs. I observe a reverse Hall-Petch relation as the size of NC decreases. Both atomistic simulations and analytical phase mixture modeling identify the grain boundaries and their activities as the mechanic bottleneck.
ContributorsWang, Zhongyong (Author) / Wang, Robert RW (Thesis advisor) / Wang, Liping LW (Committee member) / Newman, Nathan NN (Committee member) / Arizona State University (Publisher)
Created2021