Matching Items (3)

Filtering by

Clear all filters

154832-Thumbnail Image.png

Using a computational approach to study the history of systems biology: from systems to biology, 1992-2013

Description

Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’

Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a question worth examining. Did systems biology become a systems-oriented science or a biology-oriented science from 1992 to 2013?

This project utilized computational tools to analyze large data sets and interpreted the results from historical and philosophical perspectives. Tools deployed were derived from scientometrics, corpus linguistics, text-based analysis, network analysis, and GIS analysis to analyze more than 9000 articles (metadata and text) on systems biology. The application of these tools to a HPS project represents a novel approach.

The dissertation shows that systems biology has transitioned from a more mathematical, computational, and engineering-oriented discipline focusing on modeling to a more biology-oriented discipline that uses modeling as a means to address real biological problems. Also, the results show that bioengineering and medical research has increased within systems biology. This is reflected in the increase of the centrality of biology-related concepts such as cancer, over time. The dissertation also compares the development of systems biology in China with some other parts of the world, and reveals regional differences, such as a unique trajectory of systems biology in China related to a focus on traditional Chinese medicine.

This dissertation adds to the historiography of modern biology where few studies have focused on systems biology compared with the history of molecular biology and evolutionary biology.

Contributors

Agent

Created

Date Created
  • 2016

155366-Thumbnail Image.png

Development, evolution, and teeth: how we came to explain the morphological evolution of the mammalian dentition

Description

This dissertation begins to lay out a small slice of the history of morphological research, and how it has changed, from the late 19th through the close of the 20th

This dissertation begins to lay out a small slice of the history of morphological research, and how it has changed, from the late 19th through the close of the 20th century. Investigators using different methods, addressing different questions, holding different assumptions, and coming from different research fields have pursued morphological research programs, i.e. research programs that explore the process of changing form. Subsequently, the way in which investigators have pursued and understood morphology has witnessed significant changes from the 19th century to modern day research. In order to trace this shifting history of morphology, I have selected a particular organ, teeth, and traced a tendril of research on the dentition beginning in the late 19th century and ending at the year 2000. But even focusing on teeth would be impossible; the scope of research on this organ is far too vast. Instead, I narrow this dissertation to investigation of research on a particular problem: explaining mammalian tooth morphology. How researchers have investigated mammalian tooth morphology and what counts as an explanation changed dramatically during this period.

Contributors

Agent

Created

Date Created
  • 2017

161414-Thumbnail Image.png

The Meaning of Meaning in Insect Navigation Research

Description

Getting clear about what behavioral scientists mean when they invoke content presupposing concepts, like information, is necessary for understanding how humanity’s own behavioral capacities do or do not relate to

Getting clear about what behavioral scientists mean when they invoke content presupposing concepts, like information, is necessary for understanding how humanity’s own behavioral capacities do or do not relate to those of non-human animals. Yet, producing a general naturalistic definition for representational content has proven notoriously difficult. Some have argued that Claude Shannon’s formal, mathematically defined notion of information is the proper starting point for building a biological theory of content. Others have sought to define content presupposing concepts in terms of the historical selection processes that drive evolution. However, neither approach has produced definitions that capture the way successful researchers in the behavioral sciences use content-presupposing concepts. In this dissertation, I examine an ethological tradition of insect navigation research that has consistently ascribed content to insects. To clarify the meaning of such ascriptions, I analyze the practices scientists use to justify new attributions of content and the way new attributions of content guide scientists’ future research activities. In chapter 1, I examine a series of insect navigation experiments performed in 2006–2007 that led to a novel ascription of content. I argue that researchers ascribe content to insects’ navigation behaviors when those behaviors reliably accomplish a difficult goal-directed function. I also argue that ascriptions of content help researchers achieve their epistemic aims by guiding hypothesis formation and aiding comparative theorizing.
In chapter 2, I trace the history of the experimental strategy analyzed above
back to the work of Karl von Frisch in the early 20th century. I argue that von Frisch has a complicated and understudied relationship to the discipline of ethology. I support that argument by highlighting features of von Frisch’s research that both comported with and differed from the program of classical ethology.
In chapter 3, I examine the cognitive map debate in insects. I argue that the debate stems from competing research groups’ endorsement of different norms for justifying claims about the dynamics of representational contents. I then situate these different norms historically to show how the cognitive map debate is a continuation of longstanding divisions within the history of animal behavior research.

Contributors

Agent

Created

Date Created
  • 2021