Matching Items (2)
Filtering by

Clear all filters

154120-Thumbnail Image.png
Description
Online programming communities are widely used by programmers for troubleshooting or various problem solving tasks. Large and ever increasing volume of posts on these communities demands more efforts to read and comprehend thus making it harder to find relevant information. In my thesis; I designed and studied an alternate approach

Online programming communities are widely used by programmers for troubleshooting or various problem solving tasks. Large and ever increasing volume of posts on these communities demands more efforts to read and comprehend thus making it harder to find relevant information. In my thesis; I designed and studied an alternate approach by using interactive network visualization to represent relevant search results for online programming discussion forums.

I conducted user study to evaluate the effectiveness of this approach. Results show that users were able to identify relevant information more precisely via visual interface as compared to traditional list based approach. Network visualization demonstrated effective search-result navigation support to facilitate user’s tasks and improved query quality for successive queries. Subjective evaluation also showed that visualizing search results conveys more semantic information in efficient manner and makes searching more effective.
ContributorsMehta, Vishal Vimal (Author) / Hsiao, Ihan (Thesis advisor) / Walker, Erin (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2015
155987-Thumbnail Image.png
Description
A volunteered geographic information system, e.g., OpenStreetMap (OSM), collects data from volunteers to generate geospatial maps. To keep the map consistent, volunteers are expected to perform the tedious task of updating the underlying geospatial data at regular intervals. Such a map curation step takes time and considerable human effort. In

A volunteered geographic information system, e.g., OpenStreetMap (OSM), collects data from volunteers to generate geospatial maps. To keep the map consistent, volunteers are expected to perform the tedious task of updating the underlying geospatial data at regular intervals. Such a map curation step takes time and considerable human effort. In this thesis, we propose a framework that improves the process of updating geospatial maps by automatically identifying road changes from user-generated GPS traces. Since GPS traces can be sparse and noisy, the proposed framework validates the map changes with the users before propagating them to a publishable version of the map. The proposed framework achieves up to four times faster map matching performance than the state-of-the-art algorithms with only 0.1-0.3% accuracy loss.
ContributorsVementala, Nikhil (Author) / Papotti, Paolo (Thesis advisor) / Sarwat, Mohamed (Thesis advisor) / Kasim, Selçuk Candan (Committee member) / Arizona State University (Publisher)
Created2017