Matching Items (3)
Filtering by

Clear all filters

157225-Thumbnail Image.png
Description
The present series of studies examined whether a novel implementation of an

intermittent restraint (IR) chronic stress paradigm could be used to investigate hippocampal-dependent spatial ability in both sexes. In experiments 1 and 2, Sprague- Dawley male rats were used to identify the optimal IR parameters to assess spatial ability. For

The present series of studies examined whether a novel implementation of an

intermittent restraint (IR) chronic stress paradigm could be used to investigate hippocampal-dependent spatial ability in both sexes. In experiments 1 and 2, Sprague- Dawley male rats were used to identify the optimal IR parameters to assess spatial ability. For IR, rats were restrained for 2 or 6hrs/day (IR2, IR6, respectively) for five days and then given two days off, a process that was repeated for three weeks and compared to rats restrained for 6hrs/d for each day (DR6) and non-stressed controls (CON). Spatial memory was tested on the radial arm water maze (RAWM), object placement (OP), novel object recognition (NOR) and Y-maze. The results for the first two experiments revealed that IR6, but not IR2, was effective in impairing spatial memory in male rats and that task order impacted performance. In experiment 3, an extended IR paradigm for six weeks was implemented before spatial memory testing commenced in male and female rats (IR- M, IR-F). Unexpectedly, an extended IR paradigm failed to impair spatial memory in either males or females, suggesting that when extended, the IR paradigm may have become predictable. In experiment 4, an unpredictable IR (UIR) paradigm was implemented, in which restraint duration (30 or 60-min) combined with orbital shaking, time of day, and the days off from UIR were varied. UIR impaired spatial memory in males, but not females. Together with other reports, these findings support the interpretation that chronic stress negatively impairs hippocampal-dependent function in males, but not females, and that females appear to be resilient to spatial memory deficits in the face of chronic stress.
ContributorsPeay, Dylan (Author) / Conrad, Cheryl D. (Thesis advisor) / Bimonte-Nelson, Heather A. (Committee member) / Wynne, Clive (Committee member) / Arizona State University (Publisher)
Created2019
154061-Thumbnail Image.png
Description
Aging and the menopause transition are both intricately linked to cognitive changes

during mid-life and beyond. Clinical literature suggests the age at menopause onset can differentially impact cognitive status later in life. Yet, little is known about the relationship between behavioral and brain changes that occur during the transitional stage into

Aging and the menopause transition are both intricately linked to cognitive changes

during mid-life and beyond. Clinical literature suggests the age at menopause onset can differentially impact cognitive status later in life. Yet, little is known about the relationship between behavioral and brain changes that occur during the transitional stage into the post-menopausal state. Much of the pre-clinical work evaluating an animal model of menopause involves ovariectomy in rodents; however, ovariectomy results in an abrupt loss of circulating hormones and ovarian tissue, limiting the ability to evaluate gradual follicular depletion. The 4-vinylcyclohexene diepoxide (VCD) model simulates transitional menopause in rodents by selectively depleting the immature ovarian follicle reserve and allowing animals to retain their follicle-deplete ovarian tissue, resulting in a profile similar to the majority of menopausal women. Here, Vehicle or VCD treatment was administered to ovary-intact adult and middle-aged Fischer-344 rats to assess the cognitive effects of transitional menopause via VCD-induced follicular depletion over time, as well as to understand potential interactions with age, with VCD treatment beginning at either six or twelve months of age. Results indicated that subjects that experience menopause onset at a younger age had impaired spatial working memory early in the transition to a follicle-deplete state. Moreover, in the mid- and post- menopause time points, VCD-induced follicular depletion amplified an age effect, whereby Middle-Aged VCD-treated animals had poorer spatial working and reference memory performance than Young VCD-treated animals. Correlations suggested that in middle age, animals with higher circulating estrogen levels tended to perform better on spatial memory tasks. Overall, these findings suggest that the age at menopause onset is a critical parameter to consider when evaluating learning and memory across the transition to reproductive senescence. From a translational perspective, this study informs the field with respect to how the age at menopause onset might impact cognition in menopausal women, as well as provides insight into time points to explore for the window of opportunity for hormone therapy during the menopause transition to attenuate age- and menopause- related cognitive decline, and produce healthy brain aging profiles in women who retain their ovaries throughout the lifespan.
ContributorsKoebele, Stephanie Victoria (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Aiken, Leona S. (Committee member) / Conrad, Cheryl D. (Committee member) / Wynne, Clive DL (Committee member) / Arizona State University (Publisher)
Created2015
157402-Thumbnail Image.png
Description
As deception in cyberspace becomes more dynamic, research in this area should also take a dynamic approach to battling deception and false information. Research has previously shown that people are no better than chance at detecting deception. Deceptive information in cyberspace, specifically on social media, is not exempt from this

As deception in cyberspace becomes more dynamic, research in this area should also take a dynamic approach to battling deception and false information. Research has previously shown that people are no better than chance at detecting deception. Deceptive information in cyberspace, specifically on social media, is not exempt from this pitfall. Current practices in social media rely on the users to detect false information and use appropriate discretion when deciding to share information online. This is ineffective and will predicatively end with users being unable to discern true from false information at all, as deceptive information becomes more difficult to distinguish from true information. To proactively combat inaccurate and deceptive information on social media, research must be conducted to understand not only the interaction effects of false content and user characteristics, but user behavior that stems from this interaction as well. This study investigated the effects of confirmation bias and susceptibility to deception on an individual’s choice to share information, specifically to understand how these factors relate to the sharing of false controversial information.
ContributorsChinzi, Ashley (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin (Committee member) / Becker, David V (Committee member) / Arizona State University (Publisher)
Created2019