Matching Items (3)
Filtering by

Clear all filters

Description
To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how

To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how to build low-cost multi-capability robot platform

that can be used for conducting FAME research.

A TFC-KIT car chassis was augmented to provide a suite of substantive capabilities.

The augmented vehicle (FreeSLAM Robot) costs less than $500 but offers the capability

of commercially available vehicles costing over $2000.

All demonstrations presented involve rear-wheel drive FreeSLAM robot. The following

summarizes the key hardware demonstrations presented and analyzed:

(1)Cruise (v, ) control along a line,

(2) Cruise (v, ) control along a curve,

(3) Planar (x, y) Cartesian Stabilization for rear wheel drive vehicle,

(4) Finish the track with camera pan tilt structure in minimum time,

(5) Finish the track without camera pan tilt structure in minimum time,

(6) Vision based tracking performance with different cruise speed vx,

(7) Vision based tracking performance with different camera fixed look-ahead distance L,

(8) Vision based tracking performance with different delay Td from vision subsystem,

(9) Manually remote controlled robot to perform indoor SLAM,

(10) Autonomously line guided robot to perform indoor SLAM.

For most cases, hardware data is compared with, and corroborated by, model based

simulation data. In short, the thesis uses low-cost self-designed rear-wheel

drive robot to demonstrate many capabilities that are critical in order to reach the

longer-term FAME goal.
ContributorsLu, Xianglong (Author) / Rodriguez, Armando Antonio (Thesis advisor) / Berman, Spring (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2016
156281-Thumbnail Image.png
Description
Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time.

Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time. The focus of this work is to develop a new method of energy storage and charging for autonomous UAV systems, for use during long-term deployments in a constrained environment. We developed a charging solution that allows pre-equipped UAV system to land on top of designated charging pads and rapidly replenish their battery reserves, using a contact charging point. This system is designed to work with all types of rechargeable batteries, focusing on Lithium Polymer (LiPo) packs, that incorporate a battery management system for increased reliability. The project also explores optimization methods for fleets of UAV systems, to increase charging efficiency and extend battery lifespans. Each component of this project was first designed and tested in computer simulation. Following positive feedback and results, prototypes for each part of this system were developed and rigorously tested. Results show that the contact charging method is able to charge LiPo batteries at a 1-C rate, which is the industry standard rate, maintaining the same safety and efficiency standards as modern day direct connection chargers. Control software for these base stations was also created, to be integrated with a fleet management system, and optimizes UAV charge levels and distribution to extend LiPo battery lifetimes while still meeting expected mission demand. Each component of this project (hardware/software) was designed for manufacturing and implementation using industry standard tools, making it ideal for large-scale implementations. This system has been successfully tested with a fleet of UAV systems at Arizona State University, and is currently being integrated into an Arizona smart city environment for deployment.
ContributorsMian, Sami (Author) / Panchanathan, Sethuraman (Thesis advisor) / Berman, Spring (Committee member) / Yang, Yezhou (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2018
161727-Thumbnail Image.png
Description
In this thesis, the problem of designing model discrimination algorithms for unknown nonlinear systems is considered, where only raw experimental data of the system is available. This kind of model discrimination techniques finds one of its application in the estimation of the system or intent models under consideration, where all

In this thesis, the problem of designing model discrimination algorithms for unknown nonlinear systems is considered, where only raw experimental data of the system is available. This kind of model discrimination techniques finds one of its application in the estimation of the system or intent models under consideration, where all incompatible models are invalidated using new data that is available at run time. The proposed steps to reach the end goal of the algorithm for intention estimation involves two steps: First, using available experimental data of system trajectories, optimization-based techniques are used to over-approximate/abstract the dynamics of the system by constructing an upper and lower function which encapsulates/frames the true unknown system dynamics. This over-approximation is a conservative preservation of the dynamics of the system, in a way that ensures that any model which is invalidated against this approximation is guaranteed to be invalidated with the actual model of the system. The next step involves the use of optimization-based techniques to investigate the distinguishability of pairs of abstraction/approximated models using an algorithm for 'T-Distinguishability', which gives a finite horizon time 'T', within which the pair of models are guaranteed to be distinguished, and to eliminate incompatible models at run time using a 'Model Invalidation' algorithm. Furthermore, due the large amount of data under consideration, some computation-aware improvements were proposed for the processing of the raw data and the abstraction and distinguishability algorithms.The effectiveness of the above-mentioned algorithms is demonstrated using two examples. The first uses the data collected from the artificial simulation of a swarm of agents, also known as 'Boids', that move in certain patterns/formations, while the second example uses the 'HighD' dataset of naturalistic trajectories recorded on German Highways for vehicle intention estimation.
ContributorsBhagwat, Mohit Mukul (Author) / Yong, Sze Zheng (Thesis advisor) / Berman, Spring (Committee member) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2021