Matching Items (3)

158484-Thumbnail Image.png

Cancer Invasion in Time and Space

Description

Cancer is a disease involving abnormal growth of cells. Its growth dynamics is perplexing. Mathematical modeling is a way to shed light on this progress and its medical treatments. This

Cancer is a disease involving abnormal growth of cells. Its growth dynamics is perplexing. Mathematical modeling is a way to shed light on this progress and its medical treatments. This dissertation is to study cancer invasion in time and space using a mathematical approach. Chapter 1 presents a detailed review of literature on cancer modeling.

Chapter 2 focuses sorely on time where the escape of a generic cancer out of immune control is described by stochastic delayed differential equations (SDDEs). Without time delay and noise, this system demonstrates bistability. The effects of response time of the immune system and stochasticity in the tumor proliferation rate are studied by including delay and noise in the model. Stability, persistence and extinction of the tumor are analyzed. The result shows that both time delay and noise can induce the transition from low tumor burden equilibrium to high tumor equilibrium. The aforementioned work has been published (Han et al., 2019b).

In Chapter 3, Glioblastoma multiforme (GBM) is studied using a partial differential equation (PDE) model. GBM is an aggressive brain cancer with a grim prognosis. A mathematical model of GBM growth with explicit motility, birth, and death processes is proposed. A novel method is developed to approximate key characteristics of the wave profile, which can be compared with MRI data. Several test cases of MRI data of GBM patients are used to yield personalized parameterizations of the model. The aforementioned work has been published (Han et al., 2019a).

Chapter 4 presents an innovative way of forecasting spatial cancer invasion. Most mathematical models, including the ones described in previous chapters, are formulated based on strong assumptions, which are hard, if not impossible, to verify due to complexity of biological processes and lack of quality data. Instead, a nonparametric forecasting method using Gaussian processes is proposed. By exploiting the local nature of the spatio-temporal process, sparse (in terms of time) data is sufficient for forecasting. Desirable properties of Gaussian processes facilitate selection of the size of the local neighborhood and computationally efficient propagation of uncertainty. The method is tested on synthetic data and demonstrates promising results.

Contributors

Agent

Created

Date Created
  • 2020

153980-Thumbnail Image.png

Improving proctoring by using non-verbal cues during remotely administrated exams

Description

This study investigated the ability to relate a test taker’s non-verbal cues during online assessments to probable cheating incidents. Specifically, this study focused on the role of time delay, head

This study investigated the ability to relate a test taker’s non-verbal cues during online assessments to probable cheating incidents. Specifically, this study focused on the role of time delay, head pose and affective state for detection of cheating incidences in a lab-based online testing session. The analysis of a test taker’s non-verbal cues indicated that time delay, the variation of a student’s head pose relative to the computer screen and confusion had significantly statistical relation to cheating behaviors. Additionally, time delay, head pose relative to the computer screen, confusion, and the interaction term of confusion and time delay were predictors in a support vector machine of cheating prediction with an average accuracy of 70.7%. The current algorithm could automatically flag suspicious student behavior for proctors in large scale online courses during remotely administered exams.

Contributors

Agent

Created

Date Created
  • 2015

158246-Thumbnail Image.png

Analysis of Tumor-Immune Dynamics in an Evolving Dendritic Cell Therapy Model

Description

Cancer is a worldwide burden in every aspect: physically, emotionally, and financially. A need for innovation in cancer research has led to a vast interdisciplinary effort to search for the

Cancer is a worldwide burden in every aspect: physically, emotionally, and financially. A need for innovation in cancer research has led to a vast interdisciplinary effort to search for the next breakthrough. Mathematical modeling allows for a unique look into the underlying cellular dynamics and allows for testing treatment strategies without the need for clinical trials. This dissertation explores several iterations of a dendritic cell (DC) therapy model and correspondingly investigates what each iteration teaches about response to treatment.

In Chapter 2, motivated by the work of de Pillis et al. (2013), a mathematical model employing six ordinary differential (ODEs) and delay differential equations (DDEs) is formulated to understand the effectiveness of DC vaccines, accounting for cell trafficking with a blood and tumor compartment. A preliminary analysis is performed, with numerical simulations used to show the existence of oscillatory behavior. The model is then reduced to a system of four ODEs. Both models are validated using experimental data from melanoma-induced mice. Conditions under which the model admits rich dynamics observed in a clinical setting, such as periodic solutions and bistability, are established. Mathematical analysis proves the existence of a backward bifurcation and establishes thresholds for R0 that ensure tumor elimination or existence. A sensitivity analysis determines which parameters most significantly impact the reproduction number R0. Identifiability analysis reveals parameters of interest for estimation. Results are framed in terms of treatment implications, including effective combination and monotherapy strategies.

In Chapter 3, a study of whether the observed complexity can be represented with a simplified model is conducted. The DC model of Chapter 2 is reduced to a non-dimensional system of two DDEs. Mathematical and numerical analysis explore the impact of immune response time on the stability and eradication of the tumor, including an analytical proof of conditions necessary for the existence of a Hopf bifurcation. In a limiting case, conditions for global stability of the tumor-free equilibrium are outlined.

Lastly, Chapter 4 discusses future directions to explore. There still remain open questions to investigate and much work to be done, particularly involving uncertainty analysis. An outline of these steps is provided for future undertakings.

Contributors

Agent

Created

Date Created
  • 2020