Matching Items (3)
Filtering by

Clear all filters

153915-Thumbnail Image.png
Description
Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.
ContributorsIlkturk, Utku (Author) / Gelb, Anne (Thesis advisor) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Renaut, Rosemary (Committee member) / Armbruster, Dieter (Committee member) / Arizona State University (Publisher)
Created2015
157240-Thumbnail Image.png
Description
The dynamics of a fluid flow inside 2D square and 3D cubic cavities

under various configurations were simulated and analyzed using a

spectral code I developed.

This code was validated against known studies in the 3D lid-driven

cavity. It was then used to explore the various dynamical behaviors

close to the onset

The dynamics of a fluid flow inside 2D square and 3D cubic cavities

under various configurations were simulated and analyzed using a

spectral code I developed.

This code was validated against known studies in the 3D lid-driven

cavity. It was then used to explore the various dynamical behaviors

close to the onset of instability of the steady-state flow, and explain

in the process the mechanism underlying an intermittent bursting

previously observed. A fairly complete bifurcation picture emerged,

using a combination of computational tools such as selective

frequency damping, edge-state tracking and subspace restriction.

The code was then used to investigate the flow in a 2D square cavity

under stable temperature stratification, an idealized version of a lake

with warmer water at the surface compared to the bottom. The governing

equations are the Navier-Stokes equations under the Boussinesq approximation.

Simulations were done over a wide range of parameters of the problem quantifying

the driving velocity at the top (e.g. wind) and the strength of the stratification.

Particular attention was paid to the mechanisms associated with the onset of

instability of the base steady state, and the complex nontrivial dynamics

occurring beyond onset, where the presence of multiple states leads to a

rich spectrum of states, including homoclinic and heteroclinic chaos.

A third configuration investigates the flow dynamics of a fluid in a rapidly

rotating cube subjected to small amplitude modulations. The responses were

quantified by the global helicity and energy measures, and various peak

responses associated to resonances with intrinsic eigenmodes of the cavity

and/or internal retracing beams were clearly identified for the first time.

A novel approach to compute the eigenmodes is also described, making accessible

a whole catalog of these with various properties and dynamics. When the small

amplitude modulation does not align with the rotation axis (precession) we show

that a new set of eigenmodes are primarily excited as the angular velocity

increases, while triadic resonances may occur once the nonlinear regime kicks in.
ContributorsWu, Ke (Author) / Lopez, Juan (Thesis advisor) / Welfert, Bruno (Thesis advisor) / Tang, Wenbo (Committee member) / Platte, Rodrigo (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2019
154381-Thumbnail Image.png
Description
High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use

in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI

High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use

in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI and SAR provide data in terms of Fourier coefficients, and thus prescribe a natural high-order basis. The field of compressed sensing has introduced a set of techniques based on $\ell^1$ regularization that promote sparsity and facilitate working with functions having discontinuities. In this dissertation, high-order methods and $\ell^1$ regularization are used to address three problems: reconstructing piecewise smooth functions from sparse and and noisy Fourier data, recovering edge locations in piecewise smooth functions from sparse and noisy Fourier data, and reducing time-stepping constraints when numerically solving certain time-dependent hyperbolic partial differential equations.
ContributorsDenker, Dennis (Author) / Gelb, Anne (Thesis advisor) / Archibald, Richard (Committee member) / Armbruster, Dieter (Committee member) / Boggess, Albert (Committee member) / Platte, Rodrigo (Committee member) / Saders, Toby (Committee member) / Arizona State University (Publisher)
Created2016