Matching Items (1)
153742-Thumbnail Image.png
Description
ABSTRACT

The Sentinel-Arlington Volcanic Field (SAVF) is the Sentinel Plains lava field and associated volcanic edifices of late Cenozoic alkali olivine basaltic lava flows and minor tephra deposits near the Gila Bend and Painted Rock Mountains, 65 km-100km southwest of Phoenix, Arizona. The SAVF covers ~600 km2 and consists of

ABSTRACT

The Sentinel-Arlington Volcanic Field (SAVF) is the Sentinel Plains lava field and associated volcanic edifices of late Cenozoic alkali olivine basaltic lava flows and minor tephra deposits near the Gila Bend and Painted Rock Mountains, 65 km-100km southwest of Phoenix, Arizona. The SAVF covers ~600 km2 and consists of 21+ volcanic centers, primarily low shield volcanoes ranging from 4-6 km in diameter and 30-200 m in height. The SAVF represents plains-style volcanism, an emplacement style and effusion rate intermediate between flood volcanism and large shield-building volcanism. Because of these characteristics, SAVF is a good analogue to small-volume effusive volcanic centers on Mars, such as those seen the southern flank of Pavonis Mons and in the Tempe Terra region of Mars. The eruptive history of the volcanic field is established through detailed geologic map supplemented by geochemical, paleomagnetic, and geochronological analysis.

Paleomagnetic analyses were completed on 473 oriented core samples from 58 sites. Mean inclination and declination directions were calculated from 8-12 samples at each site. Fifty sites revealed well-grouped natural remanent magnetization vectors after applying alternating field demagnetization. Thirty-nine sites had reversed polarity, eleven had normal polarity. Fifteen unique paleosecular variation inclination and declination directions were identified, six were represented by more than one site with resultant vectors that correlated within a 95% confidence interval. Four reversed sites were radiometrically dated to the Matuyama Chron with ages ranging from 1.08 ± 0.15 Ma to 2.37 ± 0.02 Ma; and one normal polarity site was dated to the Olduvai normal excursion at 1.91 ± 0.59 Ma. Paleomagnetic correlations within a 95% confidence interval were used to extrapolate radiogenic dates. Results reveal 3-5 eruptive stages over ~1.5 Ma in the early Pleistocene and that the SAVF dammed and possibly diverted the lower Gila River multiple times. Preliminary modeling of the median clast size of the terrace deposits suggests a maximum discharge of ~11300 cms (~400,000 cfs) was necessary to transport observed sediment load, which is larger than the historically recorded discharge of the modern Gila River.
ContributorsCave, Shelby Renee (Author) / Clarke, Amanda (Thesis advisor) / Burt, Donald (Committee member) / Reynolds, Stephen (Committee member) / Semken, Steven (Committee member) / Schmeeckle, Mark (Committee member) / Arizona State University (Publisher)
Created2015