Matching Items (2)
Filtering by

Clear all filters

157478-Thumbnail Image.png
Description
East African extensional basins have played a crucial role in revealing the evolution and characteristics of the early stages of continental rifting and for providing the geological context of hominin evolution and innovation. The numerous volcanic eruptions, rapid sedimentation and burial, and subsequent exposure through faulting and erosion, provide excellent

East African extensional basins have played a crucial role in revealing the evolution and characteristics of the early stages of continental rifting and for providing the geological context of hominin evolution and innovation. The numerous volcanic eruptions, rapid sedimentation and burial, and subsequent exposure through faulting and erosion, provide excellent conditions for the preservation of tectonic history, paleoenvironment data, and vertebrate fossils. The reconstruction of depositional environments and provision of geochronologic frameworks for hominin sites have been largely provided by geologic investigations in conjunction with paleontological studies, like the Ledi-Geraru Research Project (LGRP). High-resolution paleoclimate records that can be directly linked to hominin fossil outcrops have been developed by the Hominin Sites and Paleolakes Drilling Project (HSPDP) which collected sedimentary-paleolake cores at or near key hominin fossil sites.

Two chapters of this dissertation are a result of research associated with the HSPDP. For HSPDP, I establish a tephrostratigraphic framework for the drill cores from the Northern Awash (Afar, Ethiopia) and Baringo-Tugen Hills-Barsemoi (Kenya) HSPDP sites. I characterize and fingerprint tephra through glass shard and feldspar phenocryst geochemistry. From tephra geochemical analyses, I establish chronostratigraphic ties between the HSPDP cores’ high-resolution paleoclimate records to outcrop stratigraphy which are associated with hominin fossils sites.

Three chapters of this dissertation are a result of field work with the LGRP. I report new geological investigations (stratigraphic, tectonic, and volcanic) of two previously unmapped regions from the eastern Ledi-Geraru (ELG), Asboli and Markaytoli. Building upon this research I present interpretations from tephra analyses, detailed stratigraphic analyses, and geologic mapping, of the Pleistocene (~2.6 to < 2.45 Ma) basin history for the LGRP. My work with the LGRP helps to reconstruct a more complete Early Pleistocene depositional and geologic history of the lower Awash Valley.

Overall, this dissertation contributes to the reconstruction of hominin paleoenvironments and the geochronological framework of the Pliocene and Pleistocene faunal/hominin records. It further contributes to rift basin history in East Africa by elaborating the later structural and stratigraphic history of the lower Awash region.
ContributorsGarello, Dominique Ines (Author) / Arrowsmith, Ramon (Thesis advisor) / Campisano, Chris J (Thesis advisor) / Reed, Kaye (Committee member) / Feary, David (Committee member) / Wittmann, Axel (Committee member) / Arizona State University (Publisher)
Created2019
Description
Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones

Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones fans, relay ramps, and double faults, as well as the surface process response to the deformation and can thus indicate the activity of the fault zone and its potential hazard. “Rocky” fault scarps are unusual because they share characteristics of bedrock and alluvial fault scarps. The Volcanic Tablelands in Bishop, CA offer a natural laboratory with an array of rocky fault scarps. Machine learning mask-Region Convolutional Neural Network segments an orthophoto to identify individual particles along a specific rocky fault scarp. The resulting rock traits for thousands of particles along the scarp are used to develop conceptual models for rocky scarp geomorphology and evolution. In addition to rocky scarp classification, these tools may be useful in many sedimentary and volcanological applications for particle mapping and characterization.
ContributorsScott, Tyler (Author) / Arrowsmith, Ramon (Thesis advisor) / Das, Jnaneshwar (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2020