Matching Items (2)
153643-Thumbnail Image.png
Description
Recent advances in medical imaging technology have greatly enhanced imaging based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this dissertation, one type of imaging objects is of interest: small blobs. Example small blob objects are cells in

Recent advances in medical imaging technology have greatly enhanced imaging based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this dissertation, one type of imaging objects is of interest: small blobs. Example small blob objects are cells in histopathology images, small breast lesions in ultrasound images, glomeruli in kidney MR images etc. This problem is particularly challenging because the small blobs often have inhomogeneous intensity distribution and indistinct boundary against the background.

This research develops a generalized four-phased system for small blob detections. The system includes (1) raw image transformation, (2) Hessian pre-segmentation, (3) feature extraction and (4) unsupervised clustering for post-pruning. First, detecting blobs from 2D images is studied where a Hessian-based Laplacian of Gaussian (HLoG) detector is proposed. Using the scale space theory as foundation, the image is smoothed via LoG. Hessian analysis is then launched to identify the single optimal scale based on which a pre-segmentation is conducted. Novel Regional features are extracted from pre-segmented blob candidates and fed to Variational Bayesian Gaussian Mixture Models (VBGMM) for post pruning. Sixteen cell histology images and two hundred cell fluorescent images are tested to demonstrate the performances of HLoG. Next, as an extension, Hessian-based Difference of Gaussians (HDoG) is proposed which is capable to identify the small blobs from 3D images. Specifically, kidney glomeruli segmentation from 3D MRI (6 rats, 3 humans) is investigated. The experimental results show that HDoG has the potential to automatically detect glomeruli, enabling new measurements of renal microstructures and pathology in preclinical and clinical studies. Realizing the computation time is a key factor impacting the clinical adoption, the last phase of this research is to investigate the data reduction technique for VBGMM in HDoG to handle large-scale datasets. A new coreset algorithm is developed for variational Bayesian mixture models. Using the same MRI dataset, it is observed that the four-phased system with coreset-VBGMM has similar performance as using the full dataset but about 20 times faster.
ContributorsZhang, Min (Author) / Wu, Teresa (Thesis advisor) / Li, Jing (Committee member) / Pavlicek, William (Committee member) / Askin, Ronald (Committee member) / Arizona State University (Publisher)
Created2015
171944-Thumbnail Image.png
Description
Over the past few decades, medical imaging is becoming important in medicine for disease diagnosis, prognosis, treatment assessment and health monitoring. As medical imaging has progressed, imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. Detecting and segmenting objects from images are often the first steps

Over the past few decades, medical imaging is becoming important in medicine for disease diagnosis, prognosis, treatment assessment and health monitoring. As medical imaging has progressed, imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. Detecting and segmenting objects from images are often the first steps in quantitative measurement of these biomarkers. While large objects can often be automatically or semi-automatically delineated, segmenting small objects (blobs) is challenging. The small object of particular interest in this dissertation are glomeruli from kidney magnetic resonance (MR) images. This problem has its unique challenges. First of all, the size of glomeruli is extremely small and very similar with noises from images. Second, there are massive of glomeruli in kidney, e.g. over 1 million glomeruli in human kidney, and the intensity distribution is heterogenous. A third recognized issue is that a large portion of glomeruli are overlapping and touched in images. The goal of this dissertation is to develop computational algorithms to identify and discover glomeruli related imaging biomarkers. The first phase is to develop a U-net joint with Hessian based Difference of Gaussians (UH-DoG) blob detector. Joining effort from deep learning alleviates the over-detection issue from Hessian analysis. Next, as extension of UH-DoG, a small blob detector using Bi-Threshold Constrained Adaptive Scales (BTCAS) is proposed. Deep learning is treated as prior of Difference of Gaussian (DoG) to improve its efficiency. By adopting BTCAS, under-segmentation issue of deep learning is addressed. The second phase is to develop a denoising convexity-consistent Blob Generative Adversarial Network (BlobGAN). BlobGAN could achieve high denoising performance and selectively denoise the image without affecting the blobs. These detectors are validated on datasets of 2D fluorescent images, 3D synthetic images, 3D MR (18 mice, 3 humans) images and proved to be outperforming the competing detectors. In the last phase, a Fréchet Descriptors Distance based Coreset approach (FDD-Coreset) is proposed for accelerating BlobGAN’s training. Experiments have shown that BlobGAN trained on FDD-Coreset not only significantly reduces the training time, but also achieves higher denoising performance and maintains approximate performance of blob identification compared with training on entire dataset.
ContributorsXu, Yanzhe (Author) / Wu, Teresa (Thesis advisor) / Iquebal, Ashif (Committee member) / Yan, Hao (Committee member) / Beeman, Scott (Committee member) / Arizona State University (Publisher)
Created2022