Matching Items (2)

155985-Thumbnail Image.png

Ultrafine dielectrophoresis-based technique for virus and biofluid manipulation

Description

Microfluidics has shown great potential in rapid isolation, sorting, and concentration of bioparticles upon its discovery. Over the past decades, significant improvements have been made in device fabrication techniques and

Microfluidics has shown great potential in rapid isolation, sorting, and concentration of bioparticles upon its discovery. Over the past decades, significant improvements have been made in device fabrication techniques and microfluidic methodologies. As a result, considerable microfluidic-based isolation and concentration techniques have been developed, particularly for rapid pathogen detection. Among all microfluidic techniques, dielectrophoresis (DEP) is one of the most effective and efficient techniques to quickly isolate and separate polarizable particles under inhomogeneous electric field. To date, extensive studies have demonstrated that DEP devices are able to precisely manipulate cells ranging from over 10 μm (mammalian cells) down to about 1 μm (small bacteria). However, very limited DEP studies on manipulating submicron bioparticles, such as viruses, have been reported.

In this dissertation, rapid capture and concentration of two different and representative types of virus particles (Sindbis virus and bacteriophage M13) with gradient insulator-based DEP (g-iDEP) has been demonstrated. Sindbis virus has a near-spherical shape with a diameter ~68 nm, while bacteriophage M13 has a filamentous shape with a length ~900 nm and a diameter ~6 nm. Under specific g-iDEP experimental conditions, the concentration of Sindbis virus can be increased two to six times within only a few seconds, using easily accessible voltages as low as 70 V. A similar phenomenon is also observed with bacteriophage M13. Meanwhile, their different DEP behavior predicts the potential of separating viruses with carefully designed microchannels and choices of experimental condition.

DEP-based microfluidics also shows great potential in manipulating blood samples, specifically rapid separations of blood cells and proteins. To investigate the ability of g-iDEP device in blood sample manipulation, some proofs of principle work was accomplished including separating two cardiac disease-related proteins (myoglobin and heart-type fatty acid binding protein) and red blood cells (RBCs). Consistent separation was observed, showing retention of RBCs and passage of the two spiked protein biomarkers. The numerical concentration of RBCs was reduced (~70 percent after one minute) with the purified proteins available for detection or further processing. This study explores and extends the use of the device from differentiating similar particles to acting as a sample pretreatment step.

Contributors

Agent

Created

Date Created
  • 2017

153628-Thumbnail Image.png

Development of a new approach to biophysical separations using dielectrophoresis

Description

Biological fluids contain information-rich mixtures of biochemicals and particles such as cells, proteins, and viruses. Selective and sensitive analysis of these fluids can enable clinicians to accurately diagnose a wide

Biological fluids contain information-rich mixtures of biochemicals and particles such as cells, proteins, and viruses. Selective and sensitive analysis of these fluids can enable clinicians to accurately diagnose a wide range of pathologies. Fluid samples such as these present an intriguing challenge to researchers; they are packed with potentially vital information, but notoriously difficult to analyze. Rapid and inexpensive analysis of blood and other bodily fluids is a topic gaining substantial attention in both science and medicine. Current limitations to many analyses include long culture times, expensive reagents, and the need for specialized laboratory facilities and personnel. Improving these tests and overcoming their limitations would allow faster and more widespread testing for disease and pathogens, potentially providing a significant advantage for healthcare in many settings.

Both gradient separation techniques and dielectrophoresis can solve some of the difficulties presented by complex biological samples, thanks to selective capture, isolation, and concentration of analytes. By merging dielectrophoresis with a gradient separation-based approach, gradient insulator dielectrophoresis (g-iDEP) promises benefits in the form of rapid and specific separation of extremely similar bioparticles. High-resolution capture can be achieved by exploiting variations in the characteristic physical properties of cells and other bioparticles.

Novel implementation and application of the technique has demonstrated the isolation and concentration of blood cells from a complex biological sample, differentiation of bacterial strains within a single species, and separation of antibiotic-resistant and antibiotic-susceptible bacteria. Furthermore, this approach allows simultaneous concentration of analyte, facilitating detection and downstream analysis. A theoretical description of the resolving capabilities of g-iDEP was also developed. This theory explores the relationship between experimental parameters and resolution. Results indicate the possibility of differentiating particles with dielectrophoretic mobilities that differ by as little as one part in 100,000,000, or electrophoretic mobilities differing by as little as one part in 100,000. These results indicate the potential g-iDEP holds in terms of both separatory power and the possibility for diagnostic applications.

Contributors

Agent

Created

Date Created
  • 2015