Matching Items (3)

Filtering by

Clear all filters

156325-Thumbnail Image.png

The Impact of Enterprise Risk Management on the Performance of Chinese Commercial Banks

Description

Chinese commercial banks have experienced a period of fast and stable development since 2007. The adoption of a comprehensive enterprise risk management (ERM) system based on the Basel Accords was a significant event for the banking supervisory authority and the

Chinese commercial banks have experienced a period of fast and stable development since 2007. The adoption of a comprehensive enterprise risk management (ERM) system based on the Basel Accords was a significant event for the banking supervisory authority and the commercial banks during this period. This study investigates the impact of ERM adoption on the financial performance of the commercial banks as well as the underlying mechanisms using longitudinal data of 96 commercial banks from 2007 to 2016. Results from quantitative analyses suggest the following findings. First, ERM adoption had a positive impact on commercial banks’ financial performance after controlling for the negative impacts of factors such as macro economic conditions and fiscal and monetary policies. Second, although this positive impact was partially attributed to increased risk appetite after the adoption of ERM, results show that ERM adoption also increased risk-adjusted financial performance. Lastly, ERM adoption improved commercial banks’ competence in risk management, as indicated by their sensitivity of financial returns to risk exposures. The above findings also received support from interviews and surveys of senior executives of commercial banks and officials of the banking supervisory authorities.

This study contributes to the understanding of how the adoption of ERM influences the financial performance of Chinese commercial banks, and has important practical implications. Based on the empirical findings, I recommend all commercial banks in China to adopt and implement ERM so that they can better cope with the challenges presented by macroeconomic uncertainty, marketization, and internationalization. In the process, it is critical for them to understand the mechanisms through which ERM influences their performance. Meanwhile, they shall be aware of the operational costs associated with the initial adoption of ERM, learn from the experiences of those that have already adopted ERM, and have a long-term orientation about performance effect of ERM adoption. Supervisory authorities can also play a key role in guiding commercial banks to be more effective and efficient in the adoption of ERM.

Contributors

Agent

Created

Date Created
2018

158905-Thumbnail Image.png

中国民营企业的传承模型研究

Description

当前,民营企业已成为中国重要支撑力量,而未来5到10年,约有300多万家民营企业面临传承困境。但学术研究领域在传承整体框架、配套机制建设方面有完整论述、有成功案例的所见不多。首先,针对以上民营企业的传承现状,本文将研究、回答五个问题:1、成功传承的标准和要素是什么?2、传承模式有哪几种,每种模式配套的传承机制是什么,该如何建立?3、民营企业应选择何种传承模式,如何选择?4、民营企业的整套传承方案如何落地搭建?5、是否有普适性的、可借鉴的民营企业传承模型,包含哪些要素?
其次,本文主要使用文献研究、案例研究、实证分析,选取中、美、德、日四家不同传承阶段、不同传承模式的知名民营企业,对其传承情况进行深入研究。在此基础上,归纳总结出传承的关键要素,对前述五个问题进行系统解答。同时,本文创新性地结合理论研究、案例研究及企业实践,提出适合我国大部分民营企业的传承全周期管理框架。
最后,根据以上研究,本文总结出关于中国民营企业传承的八大结论及建议:1、本质:权力的交接和义务的传递;2、两大风险:继任风险(继任人的能力要求)、代理风险(继任人对企业核心理念的意愿/忠诚度);3、降低风险的四大机制:领袖锻造、人才梯队、管控治理、激励机制;4、两大成功要素:“选领袖”和“建机制”;5、四大机制是并行推进、相辅相成的,要尽早构建、持续优化;6、三大模式:家族成员继承、内生培养经理人、外聘职业经理人;7、民营企业传承模型包含七大要素、五大步骤;8、民营企业在制定传承方案时,除了要注意传承模型中的要素,还要注意其他关键要素。

Contributors

Agent

Created

Date Created
2020

158044-Thumbnail Image.png

基于因子的FOF组合构建应用

Description

近年来,中国内地FOF业务发展迅速,但在业务发展初期的实践中,FOF管理人在遴选基金资产和预测其未来收益等方面遇到诸多困难,传统的FOF组合构建技术往往不理想。本文借鉴海外因子配置相关理论,尝试通过归因分析基金的收益来源,寻找能深度刻画基金经理管理能力的特质因子,创新性地提出了基于权益类基金的特质因子构建FOF组合的新方法。本文选择100家权益类私募基金,通过因子拆解剥离了市场、行业、风格等共同影响因素,遴选出特质因子表现更优的基金经理,而不是仅仅选择过往业绩好的基金经理,并基于特质因子构建一组FOF组合,与此同时,运用传统方法构建基于基金资产的另一组FOF组合,对比两种组合方法的组合绩效,实证结果显示基于特质因子的FOF组合绩效更优。本文进一步运用转移概率矩阵和相关性分析,找到了基于特质因子的FOF组合绩效更优的证据,即特质因子延续性更好和相关性更低。与基于基金资产的FOF组合配置传统方法相比,由于基金的特质因子延续性更好,运用历史数据预测未来收益的确定性相对更好;基金的特质因子之间的相关性低,大幅增强了FOF组合配置的稳定性和分散性。总体来讲,基于特质因子的FOF组合配置方法为FOF管理人提供了一个更量化、更有效、更稳健的组合配置新路径,能有效提升FOF组合配置的绩效。

关键词: FOF、因子投资、组合配置、特质因子

Contributors

Agent

Created

Date Created
2020