Matching Items (2)
Filtering by

Clear all filters

155970-Thumbnail Image.png
Description
This research explores some of the issues, challenges and dilemmas of existing research found in the construction workforce, it starts with past research that can be found on the current problems in the industry and how it has developed. It covers the distinguishing factors that influence a construction company's success

This research explores some of the issues, challenges and dilemmas of existing research found in the construction workforce, it starts with past research that can be found on the current problems in the industry and how it has developed. It covers the distinguishing factors that influence a construction company's success and how it has affected depending on the characteristics of the company. It was to examine the effectiveness of the recruitment and selection practices of entrants in the construction industry workforce and pathways to improve those practices.
ContributorsHatfield, Whitney (Author) / Ariaratnam, Samuel (Thesis advisor) / Chasey, Allan (Committee member) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2017
154362-Thumbnail Image.png
Description
The semiconductor manufacturing business model provides unique challenges for the design and construction of supporting fabrication facilities. To accommodate the latest semiconductor processes and technologies, manufacturing facilities are constantly re-tooled and upgraded. Common to this sector of construction is the retrofit project environment. This type of construction project introduces a multitude of existing conditions

The semiconductor manufacturing business model provides unique challenges for the design and construction of supporting fabrication facilities. To accommodate the latest semiconductor processes and technologies, manufacturing facilities are constantly re-tooled and upgraded. Common to this sector of construction is the retrofit project environment. This type of construction project introduces a multitude of existing conditions constraints and functions entirely differently than traditional new-build projects. This facility conversion process is further constrained by owner needs for continuous manufacturing operations and a compressed design/construction schedule to meet first-to-market milestones.

To better control the variables within this project environment, Building Information Modeling (BIM) workflows are being explored and introduced into this project typology. The construction supply-chain has also increased their focus on offsite construction techniques to prefabricate components in a controlled environment. The goal is to overlap construction timelines and improve the productivity of workers to meet the increasingly demanding schedules and to reduce on-site congestion. Limited studies exist with regards to the manufacturing retrofit construction environment, particularly when focusing on the effectiveness of BIM and prefabrication workflows. This study fills the gap by studying labor time utilization rates for Building Information Modeling workflows for prefabrication of MEP (mechanical/electrical/plumbing) and process piping equipment in a retrofit construction environment.

A semiconductor manufacturing facility serves as a case-study for this research in which the current state process for utilizing BIM for prefabrication is mapped and analyzed. Labor time utilization is studied through direct observation in relation to the current state modeling process. Qualitative analysis of workflows and quantitative analysis of labor time utilization rates provide workflow interventions which are implemented and compared against the current state modeling process.

This research utilizes a mixed-method approach to explore the hypothesis that reliable/trusted geometry is the most important component for successful implementation of a BIM for prefabrication workflow in a retrofit environment. The end product of this research is the development of a prefaBIM framework for the introduction of a dynamic modeling process for retrofit prefabrication which forms the basis for a model-based delivery system for retrofit prefabrication.
ContributorsCribbs, John (Author) / Chasey, Allan (Thesis advisor) / Ayer, Steven K. (Committee member) / Giel, Brittany (Committee member) / Arizona State University (Publisher)
Created2016