Matching Items (2)
Filtering by

Clear all filters

Description
With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that mimic the strength characteristics of a comparable part of the same design and materials created using injection molding. In achieving this goal the production cost can be reduced by eliminating the initial investment needed for the creation of expensive tooling. This initial investment reduction will allow for a wider variant of products in smaller batch runs to be made available. This thesis implements the use of ultraviolet (UV) illumination for an in-process laser local pre-deposition heating (LLPH). By comparing samples with and without the LLPH process it is determined that applied energy that is absorbed by the polymer is converted to an increase in the interlayer temperature, and resulting in an observed increase in tensile strength over the baseline test samples. The increase in interlayer bonding thus can be considered the dominating factor over polymer degradation.
ContributorsKusel, Scott Daniel (Author) / Hsu, Keng (Thesis advisor) / Sodemann, Angela (Committee member) / Kannan, Arunachala M (Committee member) / Arizona State University (Publisher)
Created2017
157898-Thumbnail Image.png
Description
With the advancement of the Additive Manufacturing technology in the fields of metals, a lot of interest has developed in Laser Powder Bed (LPBF) for the Aerospace and Automotive industries. With primary challenges like high cost and time associated with this process reducing the build time is a critical component.

With the advancement of the Additive Manufacturing technology in the fields of metals, a lot of interest has developed in Laser Powder Bed (LPBF) for the Aerospace and Automotive industries. With primary challenges like high cost and time associated with this process reducing the build time is a critical component. Being a layer by layer process increasing layer thickness causes a decrease in manufacturing time. In this study, effects of the change in layer thickness in the Laser Powder Bed Fusion of Inconel 718 were evaluated. The effects were investigated for 30, 60 and 80 μm layer thicknesses and were evaluated for Relative Density, Surface Roughness and Mechanical properties, for as-printed specimens not subjected to any heat treatment. The process was optimized to print dense pasts by varying three parameters: power, velocity and hatch distance. Significant change in some properties like true Ultimate Tensile Testing (UTS), %Necking and Yield Stress was observed.
ContributorsPatil, Dhiraj Amar (Author) / Bhate, Dhruv (Thesis advisor) / Azeredo, Bruno (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2019