Matching Items (2)
153474-Thumbnail Image.png
Description
A search for Klong to pi0 nu nubar was performed on the initial Physics data taken by the KOTO collaboration by the 30-GeV proton synchrotron at JPARC, located in Tokai, Japan. The detector used in the experiment is an upgraded version of the E391 detector, KOTO's predecessor experiment performed at

A search for Klong to pi0 nu nubar was performed on the initial Physics data taken by the KOTO collaboration by the 30-GeV proton synchrotron at JPARC, located in Tokai, Japan. The detector used in the experiment is an upgraded version of the E391 detector, KOTO's predecessor experiment performed at KEK. The analysis was performed on 2.49 E+11 ± (0.91%)stat ± (2.50%)syst kaon decays. The analysis uses Klong to 3pi0, Klong to 2pi0, and Klong to 2 gamma; for normalization and Monte Carlo validation. Based on my independent analysis, the single event sensitivity was determined to be 1.31 E-8 ± (1.22%)stat ± (7.12%)syst, comparable with the E391 result. An upper limit of 5.12 E-8 was measured for the Klong to pi0 nu nubar branching ratio at a 90% confidence level.
ContributorsMcFarland, Duncan (Author) / Comfort, Joseph R. (Thesis advisor) / Alarcon, Ricardo O (Committee member) / Dugger, Michael R (Committee member) / Lunardini, Cecilia (Committee member) / Arizona State University (Publisher)
Created2015
153631-Thumbnail Image.png
Description
With the discovery of the Higgs Boson in 2012, particle physics has decidedly moved beyond the Standard Model into a new epoch. Though the Standard Model particle content is now completely accounted for, there remain many theoretical issues about the structure of the theory in need of resolution. Among these

With the discovery of the Higgs Boson in 2012, particle physics has decidedly moved beyond the Standard Model into a new epoch. Though the Standard Model particle content is now completely accounted for, there remain many theoretical issues about the structure of the theory in need of resolution. Among these is the hierarchy problem: since the renormalized Higgs mass receives quadratic corrections from a higher cutoff scale, what keeps the Higgs boson light? Many possible solutions to this problem have been advanced, such as supersymmetry, Randall-Sundrum models, or sub-millimeter corrections to gravity. One such solution has been advanced by the Lee-Wick Standard Model. In this theory, higher-derivative operators are added to the Lagrangian for each Standard Model field, which result in propagators that possess two physical poles and fall off more rapidly in the ultraviolet regime. It can be shown by an auxiliary field transformation that the higher-derivative theory is identical to positing a second, manifestly renormalizable theory in which new fields with opposite-sign kinetic and mass terms are found. These so-called Lee-Wick fields have opposite-sign propagators, and famously cancel off the quadratic divergences that plague the renormalized Higgs mass. The states in the Hilbert space corresponding to Lee-Wick particles have negative norm, and implications for causality and unitarity are examined.

This dissertation explores a variant of the theory called the N = 3 Lee-Wick

Standard Model. The Lagrangian of this theory features a yet-higher derivative operator, which produces a propagator with three physical poles and possesses even better high-energy behavior than the minimal Lee-Wick theory. An analogous auxiliary field transformation takes this higher-derivative theory into a renormalizable theory with states of alternating positive, negative, and positive norm. The phenomenology of this theory is examined in detail, with particular emphasis on the collider signatures of Lee-Wick particles, electroweak precision constraints on the masses that the new particles can take on, and scenarios in early-universe cosmology in which Lee-Wick particles can play a significant role.
ContributorsTerBeek, Russell Henry (Author) / Lebed, Richard F (Thesis advisor) / Alarcon, Ricardo (Committee member) / Belitsky, Andrei (Committee member) / Chamberlin, Ralph (Committee member) / Parikh, Maulik (Committee member) / Arizona State University (Publisher)
Created2015