Matching Items (1)
Filtering by

Clear all filters

153243-Thumbnail Image.png
Description
This is a qualitative study about sources of self-efficacy and roles of assistive technologies (AT) associated with the science, technology, engineering and mathematics (STEM) choice and participation of STEM professionals and graduate students with sensory and orthopedic disabilities. People with disabilities are underrepresented in STEM, which can be traced back

This is a qualitative study about sources of self-efficacy and roles of assistive technologies (AT) associated with the science, technology, engineering and mathematics (STEM) choice and participation of STEM professionals and graduate students with sensory and orthopedic disabilities. People with disabilities are underrepresented in STEM, which can be traced back along the STEM pipeline to early undergraduate participation in STEM. Little research exists, however, about pathways and factors associated with successful STEM participation for people with disabilities at any point along their trajectories. Eighteen STEM professionals and graduate students with sensory and orthopedic disabilities were interviewed for this study. Sources of self-efficacy were sought from interview transcripts, as were emergent themes associated with the types, uses and roles of AT. Findings suggest that people with sensory and orthopedic disabilities weigh sources of self-efficacy differently from white males without disabilities in STEM and more like other underrepresented minorities in STEM. Social persuasions were most frequently reported and in far more detail than other sources, suggesting that this source may be most impactful in the development of self-efficacy beliefs for this group. Additionally, findings indicate that AT is critical to the successful participation of people with sensory and orthopedic disabilities in STEM at all points along their STEM pathways. Barriers center around issues of access to full engagement in mainstream STEM classrooms and out of school opportunities as well as the impact of ill-informed perceptions about the capabilities of people with disabilities held by parents, teachers and college faculty who can act as gatekeepers along STEM pathways. Gaps in disability specialists' knowledge about STEM-specific assistive technologies, especially at the college level, are also problematic. The prevalence of mainstream public school attendance reported by participants indicates that classroom teachers and disability-related educators have important roles in providing access to STEM mastery experiences as well as providing positive support and high expectations for students with disabilities. STEM and disability-based networks served to provide participants with role models, out of school STEM learning experiences and important long-term social connections in STEM communities.
ContributorsPacheco, Heather A (Author) / Baker, Dale R. (Thesis advisor) / Forouzesh, Mohammed (Committee member) / Pavri, Shireen (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2014