Matching Items (2)
Filtering by

Clear all filters

157692-Thumbnail Image.png
Description
Additive manufacturing, also known as 3-dimensional (3-d) printing, is now a rapidly growing manufacturing technique. Innovative and complex designs in various aspects of engineering have called for more efficient manufacturing techniques and 3-d printing has been a perfect choice in that direction. This research investigates the use of additive manufacturing

Additive manufacturing, also known as 3-dimensional (3-d) printing, is now a rapidly growing manufacturing technique. Innovative and complex designs in various aspects of engineering have called for more efficient manufacturing techniques and 3-d printing has been a perfect choice in that direction. This research investigates the use of additive manufacturing in fabricating polymer heat exchangers and estimate their effectiveness as a heat transfer device. Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS) and Stereolithography (SLA) are the three 3-d printing techniques that are explored for their feasibility in manufacturing heat exchangers. The research also explores a triply periodic minimal structure–the gyroid, as a heat exchanger design. The performance of the gyroid heat exchanger was studied using experiments. The main parameters considered for the experiments were heat transfer rate, effectiveness and pressure drop. From the results obtained it can be inferred that using polymers in heat exchangers helps reducing corrosion and fouling problems, but it affects the effectiveness of the heat exchangers. For our design, the maximum effectiveness achieved was 0.1. The pressure drop for the heat exchanger was observed to decrease with an increase in flow rate and the maximum pressure drop measured was 0.88 psi for a flow rate of 5 LPM.
ContributorsDanayat, Swapneel Shailesh (Author) / Phelan, Patrick (Thesis advisor) / Kwon, Beomjin (Committee member) / Azeredo, Bruno (Committee member) / Arizona State University (Publisher)
Created2019
158776-Thumbnail Image.png
Description
Traditionally, for applications that require heat transfer (e.g. heat exchangers),metals have been the go-to material for manufacturers because of their high thermal as
well as structural properties. However, metals have some notable drawbacks. They are
not corrosion-resistant, offer no freedom of design, have a high cost of production, and
sourcing the material itself.

Traditionally, for applications that require heat transfer (e.g. heat exchangers),metals have been the go-to material for manufacturers because of their high thermal as
well as structural properties. However, metals have some notable drawbacks. They are
not corrosion-resistant, offer no freedom of design, have a high cost of production, and
sourcing the material itself. Even though polymers on their own don’t show great
prospects in the field of thermal applications, their composites perform better than their
counterparts. Nanofillers, when added to a polymer matrix not only increase their
structural strength but also their thermal performance. This work aims to tackle two of
those problems by using the additive manufacturing method, stereolithography to solve
the problem of design freedom, and the use of polymer nanocomposite material for
corrosion-resistance and increase their overall thermal performance. In this work, three
different concentrations of polymer composite materials were studied: 0.25 wt%, 0.5
wt%, and 1wt% for their thermal conductivity. The samples were prepared by
magnetically stirring them for a period of 10 to 24 hours depending on their
concentrations and then sonicating in an ice bath further for a period of 2 to 3 hours.
These samples were then tested for their thermal conductivities using a Hot Disk TPS
2500S. Scanning Electron Microscope (SEM) to study the dispersion of the nanoparticles
in the matrix. Different theoretical models were studied and used to compare
experimental data to the predicted values of effective thermal conductivity. An increase
of 7.9 % in thermal conductivity of the composite material was recorded for just 1 wt%
addition of multiwalled carbon nanotubes (MWCNTs).
ContributorsGide, Kunal Manoj (Author) / Nian, Qiong (Thesis advisor) / Kwon, Beomjin (Committee member) / Li, Xiangjia (Committee member) / Arizona State University (Publisher)
Created2020