Matching Items (3)

158373-Thumbnail Image.png

Accelerated Reliability Testing of Fresh and Field-Aged Photovoltaic Modules: Encapsulant Browning and Solder Bond Degradation

Description

The popularity of solar photovoltaic (PV) energy is growing across the globe with more than 500 GW installed in 2018 with a capacity of 640 GW in 2019. Improved PV

The popularity of solar photovoltaic (PV) energy is growing across the globe with more than 500 GW installed in 2018 with a capacity of 640 GW in 2019. Improved PV module reliability minimizes the levelized cost of energy. Studying and accelerating encapsulant browning and solder bond degradation—two of the most commonly observed degradation modes in the field—in a lab requires replicating the stress conditions that induce the same field degradation modes in a controlled accelerated environment to reduce testing time.

Accelerated testing is vital in learning about the reliability of solar PV modules. The unique streamlined approach taken saves time and resources with a statistically significant number of samples being tested in one chamber under multiple experimental stress conditions that closely mirror field conditions that induce encapsulant browning and solder bond degradation. With short circuit current (Isc) and series resistance (Rs) degradation data sets at multiple temperatures, the activation energies (Ea) for encapsulant browning and solder bond degradation was calculated.

Regular degradation was replaced by the wear-out stages of encapsulant browning and solder bond degradation by subjecting two types of field-aged modules to further accelerated testing. For browning, the Ea calculated through the Arrhenius model was 0.37 ± 0.17 eV and 0.71 ± 0.07 eV. For solder bond degradation, the Arrhenius model was used to calculate an Ea of 0.12 ± 0.05 eV for solder with 2wt% Ag and 0.35 ± 0.04 eV for Sn60Pb40 solder.

To study the effect of types of encapsulant, backsheet, and solder on encapsulant browning and solder bond degradation, 9-cut-cell samples maximizing available data points while minimizing resources underwent accelerated tests described for modules. A ring-like browning feature was observed in samples with UV pass EVA above and UV cut EVA below the cells. The backsheet permeability influences the extent of oxygen photo-bleaching. In samples with solder bond degradation, increased bright spots and cell darkening resulted in increased Rs. Combining image processing with fluorescence imaging and electroluminescence imaging would yield great insight into the two degradation modes.

Contributors

Agent

Created

Date Created
  • 2020

154078-Thumbnail Image.png

Characterization and analysis of long term field aged photovoltaic modules and encapsulant materials

Description

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss in power, various nondestructive and destructive techniques were used to indicate possible causes of loss in performance. This is a two-part thesis. Part 1 presents non-destructive test results and analysis and Part 2 presents destructive test results and analysis.

Contributors

Agent

Created

Date Created
  • 2015

153107-Thumbnail Image.png

Soiling of photovoltaic modules [electronic resource]: modelling and validation of location-specific cleaning frequency optimization

Description

To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of

To increase the deployment of photovoltaic (PV) systems, a higher level of performance for PV modules should be sought. Soiling, or dust accumulation on the PV modules, is one of the conditions that negatively affect the performance of the PV modules by reducing the light incident onto the surface of the PV module. This thesis presents two studies that focus on investigating the soiling effect on the performance of the PV modules installed in Metro Phoenix area.

The first study was conducted to investigate the optimum cleaning frequency for cleaning PV modules installed in Mesa, AZ. By monitoring the soiling loss of PV modules mounted on a mock rooftop at ASU-PRL, a detailed soiling modeling was obtained. Same setup was also used for other soiling-related investigations like studying the effect of soiling density on angle of incidence (AOI) dependence, the climatological relevance (CR) to soiling, and spatial variation of the soiling loss. During the first dry season (May to June), the daily soiling rate was found as -0.061% for 20o tilted modules. Based on the obtained soiling rate, cleaning PV modules, when the soiling is just due to dust on 20o tilted residential arrays, was found economically not justifiable.

The second study focuses on evaluating the soiling loss in different locations of Metro Phoenix area of Arizona. The main goal behind the second study was to validate the daily soiling rate obtained from the mock rooftop setup in the first part of this thesis. By collaborating with local solar panel cleaning companies, soiling data for six residential systems in 5 different cities in and around Phoenix was collected, processed, and analyzed. The range of daily soiling rate in the Phoenix area was found as -0.057% to -0.085% for 13-28o tilted arrays. The soiling rate found in the first part of the thesis (-0.061%) for 20o tilted array, was validated since it falls within the range obtained from the second part of the thesis.

Contributors

Agent

Created

Date Created
  • 2014