Matching Items (3)
153086-Thumbnail Image.png
Description
A municipal electric utility in Mesa, Arizona with a peak load of approximately 85 megawatts (MW) was analyzed to determine how the implementation of renewable resources (both wind and solar) would affect the overall cost of energy purchased by the utility. The utility currently purchases all of its energy

A municipal electric utility in Mesa, Arizona with a peak load of approximately 85 megawatts (MW) was analyzed to determine how the implementation of renewable resources (both wind and solar) would affect the overall cost of energy purchased by the utility. The utility currently purchases all of its energy through long term energy supply contracts and does not own any generation assets and so optimization was achieved by minimizing the overall cost of energy while adhering to specific constraints on how much energy the utility could purchase from the short term energy market. Scenarios were analyzed for a five percent and a ten percent penetration of renewable energy in the years 2015 and 2025. Demand Side Management measures (through thermal storage in the City's district cooling system, electric vehicles, and customers' air conditioning improvements) were evaluated to determine if they would mitigate some of the cost increases that resulted from the addition of renewable resources.

In the 2015 simulation, wind energy was less expensive than solar to integrate to the supply mix. When five percent of the utility's energy requirements in 2015 are met by wind, this caused a 3.59% increase in the overall cost of energy. When that five percent is met by solar in 2015, it is estimated to cause a 3.62% increase in the overall cost of energy. A mix of wind and solar in 2015 caused a lower increase in the overall cost of energy of 3.57%. At the ten percent implementation level in 2015, solar, wind, and a mix of solar and wind caused increases of 7.28%, 7.51% and 7.27% respectively in the overall cost of energy.

In 2025, at the five percent implementation level, wind and solar caused increases in the overall cost of energy of 3.07% and 2.22% respectively. In 2025, at the ten percent implementation level, wind and solar caused increases in the overall cost of energy of 6.23% and 4.67% respectively.

Demand Side Management reduced the overall cost of energy by approximately 0.6%, mitigating some of the cost increase from adding renewable resources.
ContributorsCadorin, Anthony (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2014
157155-Thumbnail Image.png
Description
Societies seeking sustainability are transitioning from fossil fuels to clean, renewable energy sources to mitigate dangerous climate change. Energy transitions involve ethically controversial decisions that affect current and future generations’ well-being. As energy systems in the United States transition towards renewable energy, American Indian reservations with abundant energy sources are

Societies seeking sustainability are transitioning from fossil fuels to clean, renewable energy sources to mitigate dangerous climate change. Energy transitions involve ethically controversial decisions that affect current and future generations’ well-being. As energy systems in the United States transition towards renewable energy, American Indian reservations with abundant energy sources are some of the most significantly impacted communities. Strikingly, energy ethicists have not yet developed a systematic approach for prescribing ethical action within the context of energy decisions. This dissertation reinvents energy ethics as a distinct sub-discipline of applied ethics, integrating virtue ethics, deontology, and consequentialism with Sioux, Navajo, and Hopi ethical perspectives. On this new account, applied energy ethics is the analysis of questions of right and wrong using a framework for prescribing action and proper policies within private and public energy decisions. To demonstrate the usefulness of applied energy ethics, this dissertation analyzes two case studies situated on American Indian reservations: the Dakota Access Pipeline and the Navajo Generating Station.
ContributorsBethem, Jacob (Author) / DesRoches, Tyler (Thesis advisor) / Pasqualetti, Martin J (Committee member) / Graffy, Elisabeth (Committee member) / Arizona State University (Publisher)
Created2019
155245-Thumbnail Image.png
Description
Large-scale integration of wind generation introduces planning and operational difficulties due to the intermittent and highly variable nature of wind. In particular, the generation from non-hydro renewable resources is inherently variable and often times difficult to predict. Integrating significant amounts of renewable generation, thus, presents a challenge to the power

Large-scale integration of wind generation introduces planning and operational difficulties due to the intermittent and highly variable nature of wind. In particular, the generation from non-hydro renewable resources is inherently variable and often times difficult to predict. Integrating significant amounts of renewable generation, thus, presents a challenge to the power systems operators, requiring additional flexibility, which may incur a decrease of conventional generation capacity.

This research investigates the algorithms employing emerging computational advances in system operation policies that can improve the flexibility of the electricity industry. The focus of this study is on flexible operation policies for renewable generation, particularly wind generation. Specifically, distributional forecasts of windfarm generation are used to dispatch a “discounted” amount of the wind generation, leaving a reserve margin that can be used for reserve if needed. This study presents systematic mathematic formulations that allow the operator incorporate this flexibility into the operation optimization model to increase the benefits in the energy and reserve scheduling procedure. Incorporating this formulation into the dispatch optimization problem provides the operator with the ability of using forecasted probability distributions as well as the off-line generated policies to choose proper approaches for operating the system in real-time. Methods to generate such policies are discussed and a forecast-based approach for developing wind margin policies is presented. The impacts of incorporating such policies in the electricity market models are also investigated.
ContributorsHedayati Mehdiabadi, Mojgan (Author) / Zhang, Junshan (Thesis advisor) / Hedman, Kory (Thesis advisor) / Heydt, Gerald (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2017