Description
Single molecule DNA Sequencing technology has been a hot research topic in the recent decades because it holds the promise to sequence a human genome in a fast and affordable way, which will eventually make personalized medicine possible. Single molecule

Single molecule DNA Sequencing technology has been a hot research topic in the recent decades because it holds the promise to sequence a human genome in a fast and affordable way, which will eventually make personalized medicine possible. Single molecule differentiation and DNA translocation control are the two main challenges in all single molecule DNA sequencing methods. In this thesis, I will first introduce DNA sequencing technology development and its application, and then explain the performance and limitation of prior art in detail. Following that, I will show a single molecule DNA base differentiation result obtained in recognition tunneling experiments. Furthermore, I will explain the assembly of a nanofluidic platform for single strand DNA translocation, which holds the promised to be integrated into a single molecule DNA sequencing instrument for DNA translocation control. Taken together, my dissertation research demonstrated the potential of using recognition tunneling techniques to serve as a general readout system for single molecule DNA sequencing application.
Reuse Permissions
  • Downloads
    pdf (5.8 MB)

    Details

    Title
    • Towards single molecule DNA sequencing
    Contributors
    Date Created
    2013
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2013
      Note type
      thesis
    • Includes bibliographical references (p. 66-75)
      Note type
      bibliography
    • Field of study: Biochemistry

    Citation and reuse

    Statement of Responsibility

    by Hao Liu

    Machine-readable links