Description
Artificial Intelligence (AI) systems have achieved outstanding performance and have been found to be better than humans at various tasks, such as sentiment analysis, and face recognition. However, the majority of these state-of-the-art AI systems use complex Deep Learning (DL)

Artificial Intelligence (AI) systems have achieved outstanding performance and have been found to be better than humans at various tasks, such as sentiment analysis, and face recognition. However, the majority of these state-of-the-art AI systems use complex Deep Learning (DL) methods which present challenges for human experts to design and evaluate such models with respect to privacy, fairness, and robustness. Recent examination of DL models reveals that representations may include information that could lead to privacy violations, unfairness, and robustness issues. This results in AI systems that are potentially untrustworthy from a socio-technical standpoint. Trustworthiness in AI is defined by a set of model properties such as non-discriminatory bias, protection of users’ sensitive attributes, and lawful decision-making. The characteristics of trustworthy AI can be grouped into three categories: Reliability, Resiliency, and Responsibility. Past research has shown that the successful integration of an AI model depends on its trustworthiness. Thus it is crucial for organizations and researchers to build trustworthy AI systems to facilitate the seamless integration and adoption of intelligent technologies. The main issue with existing AI systems is that they are primarily trained to improve technical measures such as accuracy on a specific task but are not considerate of socio-technical measures. The aim of this dissertation is to propose methods for improving the trustworthiness of AI systems through representation learning. DL models’ representations contain information about a given input and can be used for tasks such as detecting fake news on social media or predicting the sentiment of a review. The findings of this dissertation significantly expand the scope of trustworthy AI research and establish a new paradigm for modifying data representations to balance between properties of trustworthy AI. Specifically, this research investigates multiple techniques such as reinforcement learning for understanding trustworthiness in users’ privacy, fairness, and robustness in classification tasks like cyberbullying detection and fake news detection. Since most social measures in trustworthy AI cannot be used to fine-tune or train an AI model directly, the main contribution of this dissertation lies in using reinforcement learning to alter an AI system’s behavior based on non-differentiable social measures.
Reuse Permissions
  • Downloads
    PDF (7.1 MB)

    Details

    Title
    • Representation Learning for Trustworthy AI
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Computer Science

    Machine-readable links