ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Premolar Molarization in Haplorrhine Primates
  5. Full metadata

Premolar Molarization in Haplorrhine Primates

Full metadata

Title
Premolar Molarization in Haplorrhine Primates
Description

Differences in the postcanine dentition of primates likely represent dietary adaptations given that the teeth interact directly with foods during mastication. Among early hominins, changes to both molar and premolar morphology are purported to indicate consumption of foods differing in their material properties. Some early hominins, such as the robust australopiths, possess premolars that resemble molars with enhancements to the distal part of the tooth (i.e., the talonid), including additional cusps and/or expanded basins. Such molarized premolars are thought to indicate that these hominins were processing mechanically challenging foods; that is, food items that were either hard or tough. Hypotheses tested in this study evaluated the link between the degree of premolar molarization and consumption of mechanically challenging foods in extant primates. Surface anatomy of the distal-most mandibular premolar (the P4) was quantified using a combination of 3D scans of postcanine dental casts and craniodental landmark data collected from 541 individuals, representing 22 extant primate taxa with well-studied diets and known food material properties. Taxa with more mechanically challenging diets were expected to have premolars with expanded talonids and enlarged P4s (and/or molar rows) relative to several mechanically-relevant size proxies. Taxa consuming high proportions of structural carbohydrates were also expected to have postcanine teeth with high occlusal relief (RFI), sharpness (DNE), and complexity (OPCR). Taxa consuming harder food items were expected to have lower relief and higher complexity, with sharpness determined by the proportion of structural carbohydrates included in their diet. The work presented in this dissertation supports most of these expectations, though talonid expansion per se was not clearly linked to the consumption of any particular diet. Overall, taxa with more mechanically challenging diets generally had relatively enlarged premolars when compared to taxa with softer diets and also differed predictably in their occlusal topography. The results of this dissertation support the functional significance of P4 crown size and measures of dental topography as they relate to diet and have implications for improving dietary inferences from the fossil record.

Date Created
2021
Contributors
  • Daly, Elizabeth Susanne (Author)
  • Schwartz, Gary T (Thesis advisor)
  • Delezene, Lucas K (Committee member)
  • Kimbel, William H (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Physical anthropology
  • Morphology
  • Evolution & development
  • Biomechanics
  • Dental anthropology
  • dental topography
  • Diet
  • Paranthropus
  • talonid
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
712 pages
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.161462
Embargo Release Date
Thu, 05/01/2025 - 07:18
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2021-11-16 01:18:33
System Modified
  • 2023-04-27 02:04:41
  •     
  • 7 months 1 week ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP
Contact Us
Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Maps and Locations Jobs Directory Contact ASU My ASU
Repeatedly ranked #1 in innovation (ASU ahead of MIT and Stanford), sustainability (ASU ahead of Stanford and UC Berkeley), and global impact (ASU ahead of MIT and Penn State)
Copyright and Trademark Accessibility Privacy Terms of Use Emergency