Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Analyzing cellular properties with dielectrophoresis
  5. Full metadata

Analyzing cellular properties with dielectrophoresis

Full metadata

Description

Dielectrophoresis (DEP) is a technique that influences the motion of polarizable particles in an electric field gradient. DEP can be combined with other effects that influence the motion of a particle in a microchannel, such as electrophoresis and electroosmosis. Together, these three can be used to probe properties of an analyte, including charge, conductivity, and zeta potential. DEP shows promise as a high-resolution differentiation and separation method, with the ability to distinguish between subtly-different populations. This, combined with the fast (on the order of minutes) analysis times offered by the technique, lend it many of the features necessary to be used in rapid diagnostics and point-of-care devices.

Here, a mathematical model of dielectrophoretic data is presented to connect analyte properties with data features, including the intercept and slope, enabling DEP to be used in applications which require this information. The promise of DEP to distinguish between analytes with small differences is illustrated with antibiotic resistant bacteria. The DEP system is shown to differentiate between methicillin-resistant and susceptible Staphylococcus aureus. This differentiation was achieved both label free and with bacteria that had been fluorescently-labeled. Klebsiella pneumoniae carbapenemase-positive and negative Klebsiella pneumoniae were also distinguished, demonstrating the differentiation for a different mechanism of antibiotic resistance. Differences in dielectrophoretic behavior as displayed by S. aureus and K. pneumoniae were also shown by Staphylococcus epidermidis. These differences were exploited for a separation in space of gentamicin-resistant and -susceptible S. epidermidis. Besides establishing the ability of DEP to distinguish between populations with small biophysical differences, these studies illustrate the possibility for the use of DEP in applications such as rapid diagnostics.

Date Created
2019
Contributors
  • Hilton, Shannon (Author)
  • Hayes, Mark A. (Thesis advisor)
  • Borges, Chad (Committee member)
  • Herckes, Pierre (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Analytical Chemistry
  • Chemistry
  • Biophysics
  • antimicrobial resistance
  • bacterial analysis
  • Diagnostics
  • Dielectrophoresis
  • Microfluidics
  • Separations
  • Dielectrophoresis
  • Cells--Electric properties.
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
xii, 173 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.53727
Embargo Release Date
Sat, 05/01/2021 - 06:33
Statement of Responsibility
by Shannon Louse Hilton
Description Source
Viewed on April 30, 2020
Level of coding
full
Note
Partial requirement for: Ph.D., Arizona State University, 2019
Note type
thesis
Includes bibliographical references (pages 142-166)
Note type
bibliography
Field of study: Chemistry
System Created
  • 2019-05-15 12:31:03
System Modified
  • 2021-08-26 09:47:01
  •     
  • 11 months 3 weeks ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM Dataverse
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-two Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 7 years, 2016-2022
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information