Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Upper extremity biomechanics in native and non-native signers
  5. Full metadata

Upper extremity biomechanics in native and non-native signers

Full metadata

Description

Individuals fluent in sign language who have at least one deaf parent are considered native signers while those with non-signing, hearing parents are non-native signers. Musculoskeletal pain from repetitive motion is more common from non-natives than natives. The goal of this study was twofold: 1) to examine differences in upper extremity (UE) biomechanical measures between natives and non-natives and 2) upon creating a composite measure of injury-risk unique to signers, to compare differences in scores between natives and non-natives. Non-natives were hypothesized to have less favorable biomechanical measures and composite injury-risk scores compared to natives. Dynamometry was used for measurement of strength, electromyography for ‘micro’ rest breaks and muscle tension, optical motion capture for ballistic signing, non-neutral joint angle and work envelope, a numeric pain rating scale for pain, and the modified Strain Index (SI) as a composite measure of injury-risk. There were no differences in UE strength (all p≥0.22). Natives had more rest (natives 76.38%; non-natives 26.86%; p=0.002) and less muscle tension (natives 11.53%; non-natives 48.60%; p=0.008) for non-dominant upper trapezius across the first minute of the trial. For ballistic signing, no differences were found in resultant linear segment acceleration when producing the sign for ‘again’ (natives 27.59m/s2; non-natives 21.91m/s2; p=0.20). For non-neutral joint angle, natives had more wrist flexion-extension motion when producing the sign for ‘principal’ (natives 54.93°; non-natives 46.23°; p=0.04). Work envelope demonstrated the greatest significance when determining injury-risk. Natives had a marginally greater work envelope along the z-axis (inferior-superior) across the first minute of the trial (natives 35.80cm; non-natives 30.84cm; p=0.051). Natives (30%) presented with a lower pain prevalence than non-natives (40%); however, there was no significant difference in the modified SI scores (natives 4.70 points; non-natives 3.06 points; p=0.144) and no association between presence of pain with the modified SI score (r=0.087; p=0.680). This work offers a comprehensive analysis of all the previously identified UE biomechanics unique to signers and helped to inform a composite measure of injury-risk. Use of the modified SI demonstrates promise, although its lack of association with pain does confirm that injury-risk encompasses other variables in addition to a signer’s biomechanics.

Date Created
2018
Contributors
  • Roman, Gretchen Anne (Author)
  • Swan, Pamela (Thesis advisor)
  • Vidt, Meghan (Committee member)
  • Peterson, Daniel (Committee member)
  • Lockhart, Thurmon (Committee member)
  • Ofori, Edward (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Biomechanics
  • ballistic signing
  • composite measure of injury-risk
  • 'micro' rest breaks
  • muscle tension
  • non-neutral joint angle
  • work envelope
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
159 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.51615
Level of coding
minimal
Note
Doctoral Dissertation Exercise and Nutritional Sciences 2018
System Created
  • 2019-02-01 07:01:49
System Modified
  • 2021-08-26 09:47:01
  •     
  • 8 months 3 weeks ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM Dataverse
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-two Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. #1 ASU, #2 Stanford, #3 MIT. - U.S. News and World Report, 5 years, 2016-2020
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency