A Bio-Inspired Algorithm and Foldable Robot Platform for Collective Excavation

Document
Description

Existing robotic excavation research has been primarily focused on lunar mining missions or simple traffic control in confined tunnels, however little work attempts to bring collective excavation into the realm

Existing robotic excavation research has been primarily focused on lunar mining missions or simple traffic control in confined tunnels, however little work attempts to bring collective excavation into the realm of human infrastructure. This thesis explores a decentralized approach to excavation processes, where traffic laws are borrowed from swarms of fire ants (Solenopsis invicta) or termites (Coptotermes formosanus) to create decision rules for a swarm of robots working together and organizing effectively to create a desired final excavated pattern.

First, a literature review of the behavioral rules of different types of insect colonies and the resulting structural patterns over the course of excavation was conducted. After identifying pertinent excavation laws, three different finite state machines were generated that relate to construction, search and rescue operations, and extraterrestrial exploration. After analyzing these finite state machines, it became apparent that they all shared a common controller. Then, agent-based NetLogo software was used to simulate a swarm of agents that run this controller, and a model for excavating behaviors and patterns was fit to the simulation data. This model predicts the tunnel shapes formed in the simulation as a function of the swarm size and a time delay, called the critical waiting period, in one of the state transitions. Thus, by controlling the individual agents' behavior, it was possible to control the structural outcomes of collective excavation in simulation.

To create an experimental testbed that could be used to physically implement the controller, a small foldable robotic platform was developed, and it's capabilities were tested in granular media. In order to characterize the granular media, force experiments were conducted and parameters were measured for resistive forces during an excavation cycle. The final experiment verified the robot's ability to engage in excavation and deposition, and to determine whether or not to begin the critical waiting period. This testbed can be expanded with multiple robots to conduct small-scale experiments on collective excavation, such as further exploring the effects of the critical waiting period on the resulting excavation pattern. In addition, investigating other factors like tuning digging efficiency or deposition proximity could help to transition the proposed bio-inspired swarm excavation controllers to implementation in real-world applications.