Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. An Architecture for Designing Content Agnostic Game Mechanics for Educational Burst Games
  5. Full metadata

An Architecture for Designing Content Agnostic Game Mechanics for Educational Burst Games

Full metadata

Description

Currently, educational games are designed with the educational content as the primary factor driving the design of the game. While this may seem to be the optimal approach, this design paradigm causes multiple issues. For one, the games themselves are often not engaging as game design principles were put aside in favor of increasing the educational value of the game. The other issue is that the code base of the game is mostly or completely unusable for any other games as the game mechanics are too strongly connected to the educational content being taught. This means that the mechanics are impossible to reuse in future projects without major revisions, and starting over is often more time and cost efficient.

This thesis presents the Content Agnostic Game Engineering (CAGE) model for designing educational games. CAGE is a way to separate the educational content from the game mechanics without compromising the educational value of the game. This is done by designing mechanics that can have multiple educational contents layered on top of them which can be switched out at any time. CAGE allows games to be designed with a game design first approach which allows them to maintain higher engagement levels. In addition, since the mechanics are not tied to the educational content several different educational topics can reuse the same set of mechanics without requiring major revisions to the existing code.

Results show that CAGE greatly reduces the amount of code needed to make additional versions of educational games, and speeds up the development process. The CAGE model is also shown to not induce high levels of cognitive load, allowing for more in depth topic work than was attempted in this thesis. However, engagement was low and switching the active content does interrupt the game flow considerably. Altering the difficulty of the game in real time in response to the affective state of the player was not shown to increase engagement. Potential causes of the issues with CAGE games and potential fixes are discussed.

Date Created
2017
Contributors
  • Baron, Tyler John (Author)
  • Amresh, Ashish (Thesis advisor)
  • Nelson, Brian C (Committee member)
  • Niemczyk, Mary (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Computer Science
  • Cognitive Psychology
  • Educational technology
  • Burst Games
  • Educational games
  • Game Based Learning
  • Game Mechanics
  • Software architecture
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
232 pages
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.44170
Level of coding
minimal
Note
Doctoral Dissertation Engineering 2017
System Created
  • 2017-06-01 01:58:21
System Modified
  • 2021-08-26 09:47:01
  •     
  • 1 year 6 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information