MWIR and visible nBn photodetectors and their monolithically-integration for two-color photodetector applications

Document
Description

This work demonstrates novel nBn photodetectors including mid-wave infrared (MWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices (T2SLs) with charge as the output signal, and visible nBn photodetectors based on

This work demonstrates novel nBn photodetectors including mid-wave infrared (MWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices (T2SLs) with charge as the output signal, and visible nBn photodetectors based on CdTe with current output. Furthermore, visible/MWIR two-color photodetectors (2CPDs) are fabricated through monolithic integration of the CdTe nBn photodetector and an InSb photodiode.

The MWIR nBn photodetectors have a potential well for holes present in the barrier layer. At low voltages of < −0.2 V, which ensure low dark current <10-5 A/cm2 at 77 K, photogenerated holes are collected in this well with a storage lifetime of 40 s. This charge collection process is an in-device signal integration process that reduces the random noise significantly. Since the stored holes can be readout laterally as in charge-coupled devices, it is therefore possible to make charge-output nBn with much lower noise than conventional current-output nBn photodetectors.

The visible nBn photodetectors have a CdTe absorber layer and a ZnTe barrier layer with an aligned valence band edge. By using a novel ITO/undoped-CdTe top contact design, it has achieved a high specific detectivity of 3×1013 cm-Hz1/2/W at room temperature. Particularly, this CdTe nBn photodetector grown on InSb substrates enables the monolithic integration of CdTe and InSb photodetectors, and provides a platform to study in-depth device physics of nBn photodetectors at room temperature.

Furthermore, the visible/MWIR 2CPD has been developed by the monolithic integration of the CdTe nBn and an InSb photodiode through an n-CdTe/p-InSb tunnel junction. At 77 K, the photoresponse of the 2CPD can be switched between a 1-5.5 μm MWIR band and a 350-780 nm visible band by illuminating the device with an external light source or not, and applying with proper voltages. Under optimum conditions, the 2CPD has achieved a MWIR peak responsivity of 0.75 A/W with a band rejection ratio (BRR) of 52 dB, and a visible peak responsivity of 0.3 A/W with a BRR of 18 dB. This 2CPD has enabled future compact image sensors with high fill-factor and responsivity switchable between visible and MWIR colors.