ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Geometric approaches for modeling movement quality: applications in motor control and therapy
  5. Full metadata

Geometric approaches for modeling movement quality: applications in motor control and therapy

Full metadata

Title
Geometric approaches for modeling movement quality: applications in motor control and therapy
Description
There has been tremendous technological advancement in the past two decades. Faster computers and improved sensing devices have broadened the research scope in computer vision. With these developments, the task of assessing the quality of human actions, is considered an important problem that needs to be tackled. Movement quality assessment finds wide range of application in motor control, health-care, rehabilitation and physical therapy. Home-based interactive physical therapy requires the ability to monitor, inform and assess the quality of everyday movements. Obtaining labeled data from trained therapists/experts is the main limitation, since it is both expensive and time consuming.

Motivated by recent studies in motor control and therapy, in this thesis an existing computational framework is used to assess balance impairment and disease severity in people suffering from Parkinson's disease. The framework uses high-dimensional shape descriptors of the reconstructed phase space, of the subjects' center of pressure (CoP) tracings while performing dynamical postural shifts. The performance of the framework is evaluated using a dataset collected from 43 healthy and 17 Parkinson's disease impaired subjects, and outperforms other methods, such as dynamical shift indices and use of chaotic invariants, in assessment of balance impairment.

In this thesis, an unsupervised method is also proposed that measures movement quality assessment of simple actions like sit-to-stand and dynamic posture shifts by modeling the deviation of a given movement from an ideal movement path in the configuration space, i.e. the quality of movement is directly related to similarity to the ideal trajectory, between the start and end pose. The S^1xS^1 configuration space was used to model the interaction of two joint angles in sit-to-stand actions, and the R^2 space was used to model the subject's CoP while performing dynamic posture shifts for application in movement quality estimation.
Date Created
2016
Contributors
  • Som, Anirudh (Author)
  • Turaga, Pavan (Thesis advisor)
  • Krishnamurthi, Narayanan (Committee member)
  • Spanias, Andreas (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Electrical Engineering
  • Computer Science
  • Bioinformatics
  • Motor ability
  • Equilibrium (Physiology)
  • Parkinson's disease--Patients.
  • Parkinson's disease
Resource Type
Text
Genre
Masters Thesis
Academic theses
Extent
xi, 56 pages : illustrations (some color)
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.38692
Statement of Responsibility
by Anirudh Som
Description Source
Viewed on July 28, 2016
Level of coding
full
System Created
  • 2016-06-01 08:56:31
System Modified
  • 2021-08-30 01:23:06
  •     
  • 2 years 3 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP
Contact Us
Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Maps and Locations Jobs Directory Contact ASU My ASU
Repeatedly ranked #1 in innovation (ASU ahead of MIT and Stanford), sustainability (ASU ahead of Stanford and UC Berkeley), and global impact (ASU ahead of MIT and Penn State)
Copyright and Trademark Accessibility Privacy Terms of Use Emergency